Metamath Proof Explorer


Theorem ply1sclcl

Description: The value of the algebra scalars function for (univariate) polynomials applied to a scalar results in a constant polynomial. (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypotheses ply1scl.p P = Poly 1 R
ply1scl.a A = algSc P
coe1scl.k K = Base R
ply1sclf.b B = Base P
Assertion ply1sclcl R Ring S K A S B

Proof

Step Hyp Ref Expression
1 ply1scl.p P = Poly 1 R
2 ply1scl.a A = algSc P
3 coe1scl.k K = Base R
4 ply1sclf.b B = Base P
5 1 2 3 4 ply1sclf R Ring A : K B
6 5 ffvelrnda R Ring S K A S B