Metamath Proof Explorer


Theorem ply1sclf1

Description: The polynomial scalar function is injective. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses ply1scl.p P = Poly 1 R
ply1scl.a A = algSc P
ply1sclid.k K = Base R
ply1sclf1.b B = Base P
Assertion ply1sclf1 R Ring A : K 1-1 B

Proof

Step Hyp Ref Expression
1 ply1scl.p P = Poly 1 R
2 ply1scl.a A = algSc P
3 ply1sclid.k K = Base R
4 ply1sclf1.b B = Base P
5 1 2 3 4 ply1sclf R Ring A : K B
6 fveq2 A x = A y coe 1 A x = coe 1 A y
7 6 fveq1d A x = A y coe 1 A x 0 = coe 1 A y 0
8 1 2 3 ply1sclid R Ring x K x = coe 1 A x 0
9 8 adantrr R Ring x K y K x = coe 1 A x 0
10 1 2 3 ply1sclid R Ring y K y = coe 1 A y 0
11 10 adantrl R Ring x K y K y = coe 1 A y 0
12 9 11 eqeq12d R Ring x K y K x = y coe 1 A x 0 = coe 1 A y 0
13 7 12 syl5ibr R Ring x K y K A x = A y x = y
14 13 ralrimivva R Ring x K y K A x = A y x = y
15 dff13 A : K 1-1 B A : K B x K y K A x = A y x = y
16 5 14 15 sylanbrc R Ring A : K 1-1 B