Metamath Proof Explorer


Theorem ply1sclf1

Description: The polynomial scalar function is injective. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses ply1scl.p P=Poly1R
ply1scl.a A=algScP
ply1sclid.k K=BaseR
ply1sclf1.b B=BaseP
Assertion ply1sclf1 RRingA:K1-1B

Proof

Step Hyp Ref Expression
1 ply1scl.p P=Poly1R
2 ply1scl.a A=algScP
3 ply1sclid.k K=BaseR
4 ply1sclf1.b B=BaseP
5 1 2 3 4 ply1sclf RRingA:KB
6 fveq2 Ax=Aycoe1Ax=coe1Ay
7 6 fveq1d Ax=Aycoe1Ax0=coe1Ay0
8 1 2 3 ply1sclid RRingxKx=coe1Ax0
9 8 adantrr RRingxKyKx=coe1Ax0
10 1 2 3 ply1sclid RRingyKy=coe1Ay0
11 10 adantrl RRingxKyKy=coe1Ay0
12 9 11 eqeq12d RRingxKyKx=ycoe1Ax0=coe1Ay0
13 7 12 imbitrrid RRingxKyKAx=Ayx=y
14 13 ralrimivva RRingxKyKAx=Ayx=y
15 dff13 A:K1-1BA:KBxKyKAx=Ayx=y
16 5 14 15 sylanbrc RRingA:K1-1B