Metamath Proof Explorer


Theorem ply1sclid

Description: Recover the base scalar from a scalar polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses ply1scl.p P = Poly 1 R
ply1scl.a A = algSc P
ply1sclid.k K = Base R
Assertion ply1sclid R Ring X K X = coe 1 A X 0

Proof

Step Hyp Ref Expression
1 ply1scl.p P = Poly 1 R
2 ply1scl.a A = algSc P
3 ply1sclid.k K = Base R
4 eqid 0 R = 0 R
5 1 2 3 4 coe1scl R Ring X K coe 1 A X = x 0 if x = 0 X 0 R
6 5 fveq1d R Ring X K coe 1 A X 0 = x 0 if x = 0 X 0 R 0
7 0nn0 0 0
8 iftrue x = 0 if x = 0 X 0 R = X
9 eqid x 0 if x = 0 X 0 R = x 0 if x = 0 X 0 R
10 8 9 fvmptg 0 0 X K x 0 if x = 0 X 0 R 0 = X
11 7 10 mpan X K x 0 if x = 0 X 0 R 0 = X
12 11 adantl R Ring X K x 0 if x = 0 X 0 R 0 = X
13 6 12 eqtr2d R Ring X K X = coe 1 A X 0