Metamath Proof Explorer


Theorem ply1scln0

Description: Nonzero scalars create nonzero polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses ply1scl.p P = Poly 1 R
ply1scl.a A = algSc P
ply1scl0.z 0 ˙ = 0 R
ply1scl0.y Y = 0 P
ply1scln0.k K = Base R
Assertion ply1scln0 R Ring X K X 0 ˙ A X Y

Proof

Step Hyp Ref Expression
1 ply1scl.p P = Poly 1 R
2 ply1scl.a A = algSc P
3 ply1scl0.z 0 ˙ = 0 R
4 ply1scl0.y Y = 0 P
5 ply1scln0.k K = Base R
6 eqid Base P = Base P
7 1 2 5 6 ply1sclf1 R Ring A : K 1-1 Base P
8 7 adantr R Ring X K A : K 1-1 Base P
9 simpr R Ring X K X K
10 5 3 ring0cl R Ring 0 ˙ K
11 10 adantr R Ring X K 0 ˙ K
12 f1fveq A : K 1-1 Base P X K 0 ˙ K A X = A 0 ˙ X = 0 ˙
13 8 9 11 12 syl12anc R Ring X K A X = A 0 ˙ X = 0 ˙
14 13 biimpd R Ring X K A X = A 0 ˙ X = 0 ˙
15 14 necon3d R Ring X K X 0 ˙ A X A 0 ˙
16 15 3impia R Ring X K X 0 ˙ A X A 0 ˙
17 1 2 3 4 ply1scl0 R Ring A 0 ˙ = Y
18 17 3ad2ant1 R Ring X K X 0 ˙ A 0 ˙ = Y
19 16 18 neeqtrd R Ring X K X 0 ˙ A X Y