Metamath Proof Explorer


Theorem ply1unit

Description: In a field F , a polynomial C is a unit iff it has degree 0. This corresponds to the nonzero scalars, see ply1asclunit . (Contributed by Thierry Arnoux, 25-Apr-2025)

Ref Expression
Hypotheses ply1asclunit.1 P = Poly 1 F
ply1asclunit.2 A = algSc P
ply1asclunit.3 B = Base F
ply1asclunit.4 0 ˙ = 0 F
ply1asclunit.5 φ F Field
ply1unit.d D = deg 1 F
ply1unit.f φ C Base P
Assertion ply1unit φ C Unit P D C = 0

Proof

Step Hyp Ref Expression
1 ply1asclunit.1 P = Poly 1 F
2 ply1asclunit.2 A = algSc P
3 ply1asclunit.3 B = Base F
4 ply1asclunit.4 0 ˙ = 0 F
5 ply1asclunit.5 φ F Field
6 ply1unit.d D = deg 1 F
7 ply1unit.f φ C Base P
8 5 fldcrngd φ F CRing
9 8 crngringd φ F Ring
10 9 adantr φ C Unit P F Ring
11 1 ply1ring F Ring P Ring
12 9 11 syl φ P Ring
13 eqid Unit P = Unit P
14 eqid inv r P = inv r P
15 13 14 unitinvcl P Ring C Unit P inv r P C Unit P
16 12 15 sylan φ C Unit P inv r P C Unit P
17 eqid Base P = Base P
18 17 13 unitcl inv r P C Unit P inv r P C Base P
19 16 18 syl φ C Unit P inv r P C Base P
20 eqid 0 P = 0 P
21 5 flddrngd φ F DivRing
22 drngnzr F DivRing F NzRing
23 1 ply1nz F NzRing P NzRing
24 21 22 23 3syl φ P NzRing
25 24 adantr φ C Unit P P NzRing
26 13 20 25 16 unitnz φ C Unit P inv r P C 0 P
27 6 1 20 17 deg1nn0cl F Ring inv r P C Base P inv r P C 0 P D inv r P C 0
28 10 19 26 27 syl3anc φ C Unit P D inv r P C 0
29 28 nn0red φ C Unit P D inv r P C
30 28 nn0ge0d φ C Unit P 0 D inv r P C
31 29 30 jca φ C Unit P D inv r P C 0 D inv r P C
32 7 adantr φ C Unit P C Base P
33 simpr φ C Unit P C Unit P
34 13 20 25 33 unitnz φ C Unit P C 0 P
35 6 1 20 17 deg1nn0cl F Ring C Base P C 0 P D C 0
36 10 32 34 35 syl3anc φ C Unit P D C 0
37 36 nn0red φ C Unit P D C
38 36 nn0ge0d φ C Unit P 0 D C
39 eqid P = P
40 eqid 1 P = 1 P
41 13 14 39 40 unitlinv P Ring C Unit P inv r P C P C = 1 P
42 12 41 sylan φ C Unit P inv r P C P C = 1 P
43 42 fveq2d φ C Unit P D inv r P C P C = D 1 P
44 eqid RLReg F = RLReg F
45 drngdomn F DivRing F Domn
46 21 45 syl φ F Domn
47 46 adantr φ C Unit P F Domn
48 eqid coe 1 inv r P C = coe 1 inv r P C
49 48 17 1 3 coe1fvalcl inv r P C Base P D inv r P C 0 coe 1 inv r P C D inv r P C B
50 19 28 49 syl2anc φ C Unit P coe 1 inv r P C D inv r P C B
51 6 1 20 17 4 48 deg1ldg F Ring inv r P C Base P inv r P C 0 P coe 1 inv r P C D inv r P C 0 ˙
52 10 19 26 51 syl3anc φ C Unit P coe 1 inv r P C D inv r P C 0 ˙
53 3 44 4 domnrrg F Domn coe 1 inv r P C D inv r P C B coe 1 inv r P C D inv r P C 0 ˙ coe 1 inv r P C D inv r P C RLReg F
54 47 50 52 53 syl3anc φ C Unit P coe 1 inv r P C D inv r P C RLReg F
55 6 1 44 17 39 20 10 19 26 54 32 34 deg1mul2 φ C Unit P D inv r P C P C = D inv r P C + D C
56 eqid Monic 1p F = Monic 1p F
57 1 40 56 6 mon1pid F NzRing 1 P Monic 1p F D 1 P = 0
58 57 simprd F NzRing D 1 P = 0
59 21 22 58 3syl φ D 1 P = 0
60 59 adantr φ C Unit P D 1 P = 0
61 43 55 60 3eqtr3d φ C Unit P D inv r P C + D C = 0
62 add20 D inv r P C 0 D inv r P C D C 0 D C D inv r P C + D C = 0 D inv r P C = 0 D C = 0
63 62 anassrs D inv r P C 0 D inv r P C D C 0 D C D inv r P C + D C = 0 D inv r P C = 0 D C = 0
64 63 simplbda D inv r P C 0 D inv r P C D C 0 D C D inv r P C + D C = 0 D C = 0
65 31 37 38 61 64 syl1111anc φ C Unit P D C = 0
66 9 adantr φ D C = 0 F Ring
67 7 adantr φ D C = 0 C Base P
68 6 1 17 deg1xrcl C Base P D C *
69 7 68 syl φ D C *
70 0xr 0 *
71 xeqlelt D C * 0 * D C = 0 D C 0 ¬ D C < 0
72 69 70 71 sylancl φ D C = 0 D C 0 ¬ D C < 0
73 72 simprbda φ D C = 0 D C 0
74 6 1 17 2 deg1le0 F Ring C Base P D C 0 C = A coe 1 C 0
75 74 biimpa F Ring C Base P D C 0 C = A coe 1 C 0
76 66 67 73 75 syl21anc φ D C = 0 C = A coe 1 C 0
77 5 adantr φ D C = 0 F Field
78 0nn0 0 0
79 eqid coe 1 C = coe 1 C
80 79 17 1 3 coe1fvalcl C Base P 0 0 coe 1 C 0 B
81 67 78 80 sylancl φ D C = 0 coe 1 C 0 B
82 simpl φ D C = 0 φ
83 72 simplbda φ D C = 0 ¬ D C < 0
84 6 1 20 17 deg1lt0 F Ring C Base P D C < 0 C = 0 P
85 84 necon3bbid F Ring C Base P ¬ D C < 0 C 0 P
86 85 biimpa F Ring C Base P ¬ D C < 0 C 0 P
87 66 67 83 86 syl21anc φ D C = 0 C 0 P
88 9 adantr φ D C 0 F Ring
89 7 adantr φ D C 0 C Base P
90 simpr φ D C 0 D C 0
91 6 1 4 17 20 88 89 90 deg1le0eq0 φ D C 0 C = 0 P coe 1 C 0 = 0 ˙
92 91 necon3bid φ D C 0 C 0 P coe 1 C 0 0 ˙
93 92 biimpa φ D C 0 C 0 P coe 1 C 0 0 ˙
94 82 73 87 93 syl21anc φ D C = 0 coe 1 C 0 0 ˙
95 1 2 3 4 77 81 94 ply1asclunit φ D C = 0 A coe 1 C 0 Unit P
96 76 95 eqeltrd φ D C = 0 C Unit P
97 65 96 impbida φ C Unit P D C = 0