Step |
Hyp |
Ref |
Expression |
1 |
|
ply1asclunit.1 |
|
2 |
|
ply1asclunit.2 |
|
3 |
|
ply1asclunit.3 |
|
4 |
|
ply1asclunit.4 |
|
5 |
|
ply1asclunit.5 |
|
6 |
|
ply1unit.d |
|
7 |
|
ply1unit.f |
|
8 |
5
|
fldcrngd |
|
9 |
8
|
crngringd |
|
10 |
9
|
adantr |
|
11 |
1
|
ply1ring |
|
12 |
9 11
|
syl |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 14
|
unitinvcl |
|
16 |
12 15
|
sylan |
|
17 |
|
eqid |
|
18 |
17 13
|
unitcl |
|
19 |
16 18
|
syl |
|
20 |
|
eqid |
|
21 |
5
|
flddrngd |
|
22 |
|
drngnzr |
|
23 |
1
|
ply1nz |
|
24 |
21 22 23
|
3syl |
|
25 |
24
|
adantr |
|
26 |
13 20 25 16
|
unitnz |
|
27 |
6 1 20 17
|
deg1nn0cl |
|
28 |
10 19 26 27
|
syl3anc |
|
29 |
28
|
nn0red |
|
30 |
28
|
nn0ge0d |
|
31 |
29 30
|
jca |
|
32 |
7
|
adantr |
|
33 |
|
simpr |
|
34 |
13 20 25 33
|
unitnz |
|
35 |
6 1 20 17
|
deg1nn0cl |
|
36 |
10 32 34 35
|
syl3anc |
|
37 |
36
|
nn0red |
|
38 |
36
|
nn0ge0d |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
13 14 39 40
|
unitlinv |
|
42 |
12 41
|
sylan |
|
43 |
42
|
fveq2d |
|
44 |
|
eqid |
|
45 |
|
drngdomn |
|
46 |
21 45
|
syl |
|
47 |
46
|
adantr |
|
48 |
|
eqid |
|
49 |
48 17 1 3
|
coe1fvalcl |
|
50 |
19 28 49
|
syl2anc |
|
51 |
6 1 20 17 4 48
|
deg1ldg |
|
52 |
10 19 26 51
|
syl3anc |
|
53 |
3 44 4
|
domnrrg |
|
54 |
47 50 52 53
|
syl3anc |
|
55 |
6 1 44 17 39 20 10 19 26 54 32 34
|
deg1mul2 |
|
56 |
|
eqid |
|
57 |
1 40 56 6
|
mon1pid |
|
58 |
57
|
simprd |
|
59 |
21 22 58
|
3syl |
|
60 |
59
|
adantr |
|
61 |
43 55 60
|
3eqtr3d |
|
62 |
|
add20 |
|
63 |
62
|
anassrs |
|
64 |
63
|
simplbda |
|
65 |
31 37 38 61 64
|
syl1111anc |
|
66 |
9
|
adantr |
|
67 |
7
|
adantr |
|
68 |
6 1 17
|
deg1xrcl |
|
69 |
7 68
|
syl |
|
70 |
|
0xr |
|
71 |
|
xeqlelt |
|
72 |
69 70 71
|
sylancl |
|
73 |
72
|
simprbda |
|
74 |
6 1 17 2
|
deg1le0 |
|
75 |
74
|
biimpa |
|
76 |
66 67 73 75
|
syl21anc |
|
77 |
5
|
adantr |
|
78 |
|
0nn0 |
|
79 |
|
eqid |
|
80 |
79 17 1 3
|
coe1fvalcl |
|
81 |
67 78 80
|
sylancl |
|
82 |
|
simpl |
|
83 |
72
|
simplbda |
|
84 |
6 1 20 17
|
deg1lt0 |
|
85 |
84
|
necon3bbid |
|
86 |
85
|
biimpa |
|
87 |
66 67 83 86
|
syl21anc |
|
88 |
9
|
adantr |
|
89 |
7
|
adantr |
|
90 |
|
simpr |
|
91 |
6 1 4 17 20 88 89 90
|
deg1le0eq0 |
|
92 |
91
|
necon3bid |
|
93 |
92
|
biimpa |
|
94 |
82 73 87 93
|
syl21anc |
|
95 |
1 2 3 4 77 81 94
|
ply1asclunit |
|
96 |
76 95
|
eqeltrd |
|
97 |
65 96
|
impbida |
|