| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyadd.1 |  | 
						
							| 2 |  | plyadd.2 |  | 
						
							| 3 |  | plyadd.3 |  | 
						
							| 4 |  | elply2 |  | 
						
							| 5 | 4 | simprbi |  | 
						
							| 6 | 1 5 | syl |  | 
						
							| 7 |  | elply2 |  | 
						
							| 8 | 7 | simprbi |  | 
						
							| 9 | 2 8 | syl |  | 
						
							| 10 |  | reeanv |  | 
						
							| 11 |  | reeanv |  | 
						
							| 12 |  | simp1l |  | 
						
							| 13 | 12 1 | syl |  | 
						
							| 14 | 12 2 | syl |  | 
						
							| 15 | 12 3 | sylan |  | 
						
							| 16 |  | simp1rl |  | 
						
							| 17 |  | simp1rr |  | 
						
							| 18 |  | simp2l |  | 
						
							| 19 |  | simp2r |  | 
						
							| 20 |  | simp3ll |  | 
						
							| 21 |  | simp3rl |  | 
						
							| 22 |  | simp3lr |  | 
						
							| 23 |  | oveq1 |  | 
						
							| 24 | 23 | oveq2d |  | 
						
							| 25 | 24 | sumeq2sdv |  | 
						
							| 26 |  | fveq2 |  | 
						
							| 27 |  | oveq2 |  | 
						
							| 28 | 26 27 | oveq12d |  | 
						
							| 29 | 28 | cbvsumv |  | 
						
							| 30 | 25 29 | eqtrdi |  | 
						
							| 31 | 30 | cbvmptv |  | 
						
							| 32 | 22 31 | eqtrdi |  | 
						
							| 33 |  | simp3rr |  | 
						
							| 34 | 23 | oveq2d |  | 
						
							| 35 | 34 | sumeq2sdv |  | 
						
							| 36 |  | fveq2 |  | 
						
							| 37 | 36 27 | oveq12d |  | 
						
							| 38 | 37 | cbvsumv |  | 
						
							| 39 | 35 38 | eqtrdi |  | 
						
							| 40 | 39 | cbvmptv |  | 
						
							| 41 | 33 40 | eqtrdi |  | 
						
							| 42 | 13 14 15 16 17 18 19 20 21 32 41 | plyaddlem |  | 
						
							| 43 | 42 | 3expia |  | 
						
							| 44 | 43 | rexlimdvva |  | 
						
							| 45 | 11 44 | biimtrrid |  | 
						
							| 46 | 45 | rexlimdvva |  | 
						
							| 47 | 10 46 | biimtrrid |  | 
						
							| 48 | 6 9 47 | mp2and |  |