Metamath Proof Explorer


Theorem plycn

Description: A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Assertion plycn F Poly S F : cn

Proof

Step Hyp Ref Expression
1 eqid coeff F = coeff F
2 eqid deg F = deg F
3 1 2 coeid F Poly S F = z k = 0 deg F coeff F k z k
4 eqid TopOpen fld = TopOpen fld
5 4 cnfldtopon TopOpen fld TopOn
6 5 a1i F Poly S TopOpen fld TopOn
7 fzfid F Poly S 0 deg F Fin
8 5 a1i F Poly S k 0 deg F TopOpen fld TopOn
9 1 coef3 F Poly S coeff F : 0
10 elfznn0 k 0 deg F k 0
11 ffvelcdm coeff F : 0 k 0 coeff F k
12 9 10 11 syl2an F Poly S k 0 deg F coeff F k
13 8 8 12 cnmptc F Poly S k 0 deg F z coeff F k TopOpen fld Cn TopOpen fld
14 10 adantl F Poly S k 0 deg F k 0
15 4 expcn k 0 z z k TopOpen fld Cn TopOpen fld
16 14 15 syl F Poly S k 0 deg F z z k TopOpen fld Cn TopOpen fld
17 4 mpomulcn u , v u v TopOpen fld × t TopOpen fld Cn TopOpen fld
18 17 a1i F Poly S k 0 deg F u , v u v TopOpen fld × t TopOpen fld Cn TopOpen fld
19 oveq12 u = coeff F k v = z k u v = coeff F k z k
20 8 13 16 8 8 18 19 cnmpt12 F Poly S k 0 deg F z coeff F k z k TopOpen fld Cn TopOpen fld
21 4 6 7 20 fsumcn F Poly S z k = 0 deg F coeff F k z k TopOpen fld Cn TopOpen fld
22 3 21 eqeltrd F Poly S F TopOpen fld Cn TopOpen fld
23 4 cncfcn1 cn = TopOpen fld Cn TopOpen fld
24 22 23 eleqtrrdi F Poly S F : cn