Step |
Hyp |
Ref |
Expression |
1 |
|
plyco.1 |
|
2 |
|
plyco.2 |
|
3 |
|
plyco.3 |
|
4 |
|
plyco.4 |
|
5 |
|
plyf |
|
6 |
2 5
|
syl |
|
7 |
6
|
ffvelrnda |
|
8 |
6
|
feqmptd |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
9 10
|
coeid |
|
12 |
1 11
|
syl |
|
13 |
|
oveq1 |
|
14 |
13
|
oveq2d |
|
15 |
14
|
sumeq2sdv |
|
16 |
7 8 12 15
|
fmptco |
|
17 |
|
dgrcl |
|
18 |
1 17
|
syl |
|
19 |
|
oveq2 |
|
20 |
19
|
sumeq1d |
|
21 |
20
|
mpteq2dv |
|
22 |
21
|
eleq1d |
|
23 |
22
|
imbi2d |
|
24 |
|
oveq2 |
|
25 |
24
|
sumeq1d |
|
26 |
25
|
mpteq2dv |
|
27 |
26
|
eleq1d |
|
28 |
27
|
imbi2d |
|
29 |
|
oveq2 |
|
30 |
29
|
sumeq1d |
|
31 |
30
|
mpteq2dv |
|
32 |
31
|
eleq1d |
|
33 |
32
|
imbi2d |
|
34 |
|
oveq2 |
|
35 |
34
|
sumeq1d |
|
36 |
35
|
mpteq2dv |
|
37 |
36
|
eleq1d |
|
38 |
37
|
imbi2d |
|
39 |
|
0z |
|
40 |
7
|
exp0d |
|
41 |
40
|
oveq2d |
|
42 |
|
plybss |
|
43 |
1 42
|
syl |
|
44 |
|
0cnd |
|
45 |
44
|
snssd |
|
46 |
43 45
|
unssd |
|
47 |
9
|
coef |
|
48 |
1 47
|
syl |
|
49 |
|
0nn0 |
|
50 |
|
ffvelrn |
|
51 |
48 49 50
|
sylancl |
|
52 |
46 51
|
sseldd |
|
53 |
52
|
adantr |
|
54 |
53
|
mulid1d |
|
55 |
41 54
|
eqtrd |
|
56 |
55 53
|
eqeltrd |
|
57 |
|
fveq2 |
|
58 |
|
oveq2 |
|
59 |
57 58
|
oveq12d |
|
60 |
59
|
fsum1 |
|
61 |
39 56 60
|
sylancr |
|
62 |
61 55
|
eqtrd |
|
63 |
62
|
mpteq2dva |
|
64 |
|
fconstmpt |
|
65 |
63 64
|
eqtr4di |
|
66 |
|
plyconst |
|
67 |
46 51 66
|
syl2anc |
|
68 |
|
plyun0 |
|
69 |
67 68
|
eleqtrdi |
|
70 |
65 69
|
eqeltrd |
|
71 |
|
simprr |
|
72 |
46
|
adantr |
|
73 |
|
peano2nn0 |
|
74 |
|
ffvelrn |
|
75 |
48 73 74
|
syl2an |
|
76 |
|
plyconst |
|
77 |
72 75 76
|
syl2anc |
|
78 |
77 68
|
eleqtrdi |
|
79 |
|
nn0p1nn |
|
80 |
|
oveq2 |
|
81 |
80
|
mpteq2dv |
|
82 |
81
|
eleq1d |
|
83 |
82
|
imbi2d |
|
84 |
|
oveq2 |
|
85 |
84
|
mpteq2dv |
|
86 |
85
|
eleq1d |
|
87 |
86
|
imbi2d |
|
88 |
|
oveq2 |
|
89 |
88
|
mpteq2dv |
|
90 |
89
|
eleq1d |
|
91 |
90
|
imbi2d |
|
92 |
7
|
exp1d |
|
93 |
92
|
mpteq2dva |
|
94 |
93 8
|
eqtr4d |
|
95 |
94 2
|
eqeltrd |
|
96 |
|
simprr |
|
97 |
2
|
adantr |
|
98 |
3
|
adantlr |
|
99 |
4
|
adantlr |
|
100 |
96 97 98 99
|
plymul |
|
101 |
100
|
expr |
|
102 |
|
cnex |
|
103 |
102
|
a1i |
|
104 |
|
ovexd |
|
105 |
7
|
adantlr |
|
106 |
|
eqidd |
|
107 |
8
|
adantr |
|
108 |
103 104 105 106 107
|
offval2 |
|
109 |
|
nnnn0 |
|
110 |
109
|
ad2antlr |
|
111 |
105 110
|
expp1d |
|
112 |
111
|
mpteq2dva |
|
113 |
108 112
|
eqtr4d |
|
114 |
113
|
eleq1d |
|
115 |
101 114
|
sylibd |
|
116 |
115
|
expcom |
|
117 |
116
|
a2d |
|
118 |
83 87 91 91 95 117
|
nnind |
|
119 |
79 118
|
syl |
|
120 |
119
|
impcom |
|
121 |
3
|
adantlr |
|
122 |
4
|
adantlr |
|
123 |
78 120 121 122
|
plymul |
|
124 |
123
|
adantrr |
|
125 |
3
|
adantlr |
|
126 |
71 124 125
|
plyadd |
|
127 |
126
|
expr |
|
128 |
102
|
a1i |
|
129 |
|
sumex |
|
130 |
129
|
a1i |
|
131 |
|
ovexd |
|
132 |
|
eqidd |
|
133 |
|
fvexd |
|
134 |
|
ovexd |
|
135 |
|
fconstmpt |
|
136 |
135
|
a1i |
|
137 |
|
eqidd |
|
138 |
128 133 134 136 137
|
offval2 |
|
139 |
128 130 131 132 138
|
offval2 |
|
140 |
|
simplr |
|
141 |
|
nn0uz |
|
142 |
140 141
|
eleqtrdi |
|
143 |
9
|
coef3 |
|
144 |
1 143
|
syl |
|
145 |
144
|
ad2antrr |
|
146 |
|
elfznn0 |
|
147 |
|
ffvelrn |
|
148 |
145 146 147
|
syl2an |
|
149 |
7
|
adantlr |
|
150 |
|
expcl |
|
151 |
149 146 150
|
syl2an |
|
152 |
148 151
|
mulcld |
|
153 |
|
fveq2 |
|
154 |
|
oveq2 |
|
155 |
153 154
|
oveq12d |
|
156 |
142 152 155
|
fsump1 |
|
157 |
156
|
mpteq2dva |
|
158 |
139 157
|
eqtr4d |
|
159 |
158
|
eleq1d |
|
160 |
127 159
|
sylibd |
|
161 |
160
|
expcom |
|
162 |
161
|
a2d |
|
163 |
23 28 33 38 70 162
|
nn0ind |
|
164 |
18 163
|
mpcom |
|
165 |
16 164
|
eqeltrd |
|