Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Elementary properties of complex polynomials
plyconst
Next ⟩
ne0p
Metamath Proof Explorer
Ascii
Unicode
Theorem
plyconst
Description:
A constant function is a polynomial.
(Contributed by
Mario Carneiro
, 17-Jul-2014)
Ref
Expression
Assertion
plyconst
⊢
S
⊆
ℂ
∧
A
∈
S
→
ℂ
×
A
∈
Poly
⁡
S
Proof
Step
Hyp
Ref
Expression
1
exp0
⊢
z
∈
ℂ
→
z
0
=
1
2
1
adantl
⊢
S
⊆
ℂ
∧
A
∈
S
∧
z
∈
ℂ
→
z
0
=
1
3
2
oveq2d
⊢
S
⊆
ℂ
∧
A
∈
S
∧
z
∈
ℂ
→
A
⁢
z
0
=
A
⋅
1
4
ssel2
⊢
S
⊆
ℂ
∧
A
∈
S
→
A
∈
ℂ
5
4
adantr
⊢
S
⊆
ℂ
∧
A
∈
S
∧
z
∈
ℂ
→
A
∈
ℂ
6
5
mulid1d
⊢
S
⊆
ℂ
∧
A
∈
S
∧
z
∈
ℂ
→
A
⋅
1
=
A
7
3
6
eqtrd
⊢
S
⊆
ℂ
∧
A
∈
S
∧
z
∈
ℂ
→
A
⁢
z
0
=
A
8
7
mpteq2dva
⊢
S
⊆
ℂ
∧
A
∈
S
→
z
∈
ℂ
⟼
A
⁢
z
0
=
z
∈
ℂ
⟼
A
9
fconstmpt
⊢
ℂ
×
A
=
z
∈
ℂ
⟼
A
10
8
9
eqtr4di
⊢
S
⊆
ℂ
∧
A
∈
S
→
z
∈
ℂ
⟼
A
⁢
z
0
=
ℂ
×
A
11
0nn0
⊢
0
∈
ℕ
0
12
eqid
⊢
z
∈
ℂ
⟼
A
⁢
z
0
=
z
∈
ℂ
⟼
A
⁢
z
0
13
12
ply1term
⊢
S
⊆
ℂ
∧
A
∈
S
∧
0
∈
ℕ
0
→
z
∈
ℂ
⟼
A
⁢
z
0
∈
Poly
⁡
S
14
11
13
mp3an3
⊢
S
⊆
ℂ
∧
A
∈
S
→
z
∈
ℂ
⟼
A
⁢
z
0
∈
Poly
⁡
S
15
10
14
eqeltrrd
⊢
S
⊆
ℂ
∧
A
∈
S
→
ℂ
×
A
∈
Poly
⁡
S