Metamath Proof Explorer


Theorem plycpn

Description: Polynomials are smooth. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion plycpn F Poly S F ran C n

Proof

Step Hyp Ref Expression
1 plyf F Poly S F :
2 1 adantr F Poly S n 0 F :
3 cnex V
4 3 3 fpm F : F 𝑝𝑚
5 2 4 syl F Poly S n 0 F 𝑝𝑚
6 dvnply F Poly S n 0 D n F n Poly
7 plycn D n F n Poly D n F n : cn
8 6 7 syl F Poly S n 0 D n F n : cn
9 2 fdmd F Poly S n 0 dom F =
10 9 oveq1d F Poly S n 0 dom F cn = cn
11 8 10 eleqtrrd F Poly S n 0 D n F n : dom F cn
12 ssidd F Poly S
13 elcpn n 0 F C n n F 𝑝𝑚 D n F n : dom F cn
14 12 13 sylan F Poly S n 0 F C n n F 𝑝𝑚 D n F n : dom F cn
15 5 11 14 mpbir2and F Poly S n 0 F C n n
16 15 ralrimiva F Poly S n 0 F C n n
17 ssid
18 fncpn C n Fn 0
19 eleq2 x = C n n F x F C n n
20 19 ralrn C n Fn 0 x ran C n F x n 0 F C n n
21 17 18 20 mp2b x ran C n F x n 0 F C n n
22 16 21 sylibr F Poly S x ran C n F x
23 elintg F Poly S F ran C n x ran C n F x
24 22 23 mpbird F Poly S F ran C n