Step |
Hyp |
Ref |
Expression |
1 |
|
plydiv.pl |
|
2 |
|
plydiv.tm |
|
3 |
|
plydiv.rc |
|
4 |
|
plydiv.m1 |
|
5 |
|
plydiv.f |
|
6 |
|
plydiv.g |
|
7 |
|
plydiv.z |
|
8 |
|
plydiv.r |
|
9 |
|
dgrcl |
|
10 |
5 9
|
syl |
|
11 |
10
|
nn0red |
|
12 |
|
dgrcl |
|
13 |
6 12
|
syl |
|
14 |
13
|
nn0red |
|
15 |
11 14
|
resubcld |
|
16 |
|
arch |
|
17 |
15 16
|
syl |
|
18 |
|
olc |
|
19 |
|
eqeq1 |
|
20 |
|
fveq2 |
|
21 |
20
|
oveq1d |
|
22 |
21
|
breq1d |
|
23 |
19 22
|
orbi12d |
|
24 |
|
oveq1 |
|
25 |
24 8
|
eqtr4di |
|
26 |
25
|
eqeq1d |
|
27 |
25
|
fveq2d |
|
28 |
27
|
breq1d |
|
29 |
26 28
|
orbi12d |
|
30 |
29
|
rexbidv |
|
31 |
23 30
|
imbi12d |
|
32 |
|
nnnn0 |
|
33 |
|
breq2 |
|
34 |
33
|
orbi2d |
|
35 |
34
|
imbi1d |
|
36 |
35
|
ralbidv |
|
37 |
36
|
imbi2d |
|
38 |
|
breq2 |
|
39 |
38
|
orbi2d |
|
40 |
39
|
imbi1d |
|
41 |
40
|
ralbidv |
|
42 |
41
|
imbi2d |
|
43 |
|
breq2 |
|
44 |
43
|
orbi2d |
|
45 |
44
|
imbi1d |
|
46 |
45
|
ralbidv |
|
47 |
46
|
imbi2d |
|
48 |
1
|
adantlr |
|
49 |
2
|
adantlr |
|
50 |
3
|
adantlr |
|
51 |
4
|
adantr |
|
52 |
|
simprl |
|
53 |
6
|
adantr |
|
54 |
7
|
adantr |
|
55 |
|
eqid |
|
56 |
|
simprr |
|
57 |
48 49 50 51 52 53 54 55 56
|
plydivlem3 |
|
58 |
57
|
expr |
|
59 |
58
|
ralrimiva |
|
60 |
|
eqeq1 |
|
61 |
|
fveq2 |
|
62 |
61
|
oveq1d |
|
63 |
62
|
breq1d |
|
64 |
60 63
|
orbi12d |
|
65 |
|
oveq1 |
|
66 |
65
|
eqeq1d |
|
67 |
65
|
fveq2d |
|
68 |
67
|
breq1d |
|
69 |
66 68
|
orbi12d |
|
70 |
69
|
rexbidv |
|
71 |
64 70
|
imbi12d |
|
72 |
71
|
cbvralvw |
|
73 |
|
simplll |
|
74 |
73 1
|
sylan |
|
75 |
73 2
|
sylan |
|
76 |
73 3
|
sylan |
|
77 |
73 4
|
syl |
|
78 |
|
simplr |
|
79 |
73 6
|
syl |
|
80 |
73 7
|
syl |
|
81 |
|
simpllr |
|
82 |
|
simprrr |
|
83 |
|
simprrl |
|
84 |
|
eqid |
|
85 |
|
oveq1 |
|
86 |
85
|
oveq2d |
|
87 |
86
|
cbvmptv |
|
88 |
|
simprl |
|
89 |
|
oveq2 |
|
90 |
89
|
oveq2d |
|
91 |
90
|
eqeq1d |
|
92 |
90
|
fveq2d |
|
93 |
92
|
breq1d |
|
94 |
91 93
|
orbi12d |
|
95 |
94
|
cbvrexvw |
|
96 |
95
|
imbi2i |
|
97 |
96
|
ralbii |
|
98 |
88 97
|
sylib |
|
99 |
|
eqid |
|
100 |
|
eqid |
|
101 |
|
eqid |
|
102 |
|
eqid |
|
103 |
74 75 76 77 78 79 80 55 81 82 83 84 87 98 99 100 101 102
|
plydivlem4 |
|
104 |
103
|
exp32 |
|
105 |
104
|
ralrimdva |
|
106 |
72 105
|
syl5bi |
|
107 |
106
|
ancld |
|
108 |
|
dgrcl |
|
109 |
108
|
adantl |
|
110 |
109
|
nn0zd |
|
111 |
6
|
ad2antrr |
|
112 |
111 12
|
syl |
|
113 |
112
|
nn0zd |
|
114 |
110 113
|
zsubcld |
|
115 |
|
nn0z |
|
116 |
115
|
ad2antlr |
|
117 |
|
zleltp1 |
|
118 |
114 116 117
|
syl2anc |
|
119 |
114
|
zred |
|
120 |
|
nn0re |
|
121 |
120
|
ad2antlr |
|
122 |
119 121
|
leloed |
|
123 |
118 122
|
bitr3d |
|
124 |
123
|
orbi2d |
|
125 |
|
pm5.63 |
|
126 |
|
df-ne |
|
127 |
126
|
anbi1i |
|
128 |
127
|
orbi2i |
|
129 |
125 128
|
bitr4i |
|
130 |
129
|
orbi2i |
|
131 |
|
or12 |
|
132 |
|
or12 |
|
133 |
130 131 132
|
3bitr4i |
|
134 |
|
orass |
|
135 |
133 134
|
bitr4i |
|
136 |
124 135
|
bitrdi |
|
137 |
136
|
imbi1d |
|
138 |
|
jaob |
|
139 |
137 138
|
bitrdi |
|
140 |
139
|
ralbidva |
|
141 |
|
r19.26 |
|
142 |
140 141
|
bitrdi |
|
143 |
107 142
|
sylibrd |
|
144 |
143
|
expcom |
|
145 |
144
|
a2d |
|
146 |
37 42 47 42 59 145
|
nn0ind |
|
147 |
32 146
|
syl |
|
148 |
147
|
impcom |
|
149 |
5
|
adantr |
|
150 |
31 148 149
|
rspcdva |
|
151 |
18 150
|
syl5 |
|
152 |
151
|
rexlimdva |
|
153 |
17 152
|
mpd |
|