Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
The division algorithm for polynomials
plydivlem2
Next ⟩
plydivlem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
plydivlem2
Description:
Lemma for
plydivalg
.
(Contributed by
Mario Carneiro
, 24-Jul-2014)
Ref
Expression
Hypotheses
plydiv.pl
⊢
φ
∧
x
∈
S
∧
y
∈
S
→
x
+
y
∈
S
plydiv.tm
⊢
φ
∧
x
∈
S
∧
y
∈
S
→
x
⁢
y
∈
S
plydiv.rc
⊢
φ
∧
x
∈
S
∧
x
≠
0
→
1
x
∈
S
plydiv.m1
⊢
φ
→
−
1
∈
S
plydiv.f
⊢
φ
→
F
∈
Poly
⁡
S
plydiv.g
⊢
φ
→
G
∈
Poly
⁡
S
plydiv.z
⊢
φ
→
G
≠
0
𝑝
plydiv.r
⊢
R
=
F
−
f
G
×
f
q
Assertion
plydivlem2
⊢
φ
∧
q
∈
Poly
⁡
S
→
R
∈
Poly
⁡
S
Proof
Step
Hyp
Ref
Expression
1
plydiv.pl
⊢
φ
∧
x
∈
S
∧
y
∈
S
→
x
+
y
∈
S
2
plydiv.tm
⊢
φ
∧
x
∈
S
∧
y
∈
S
→
x
⁢
y
∈
S
3
plydiv.rc
⊢
φ
∧
x
∈
S
∧
x
≠
0
→
1
x
∈
S
4
plydiv.m1
⊢
φ
→
−
1
∈
S
5
plydiv.f
⊢
φ
→
F
∈
Poly
⁡
S
6
plydiv.g
⊢
φ
→
G
∈
Poly
⁡
S
7
plydiv.z
⊢
φ
→
G
≠
0
𝑝
8
plydiv.r
⊢
R
=
F
−
f
G
×
f
q
9
5
adantr
⊢
φ
∧
q
∈
Poly
⁡
S
→
F
∈
Poly
⁡
S
10
6
adantr
⊢
φ
∧
q
∈
Poly
⁡
S
→
G
∈
Poly
⁡
S
11
simpr
⊢
φ
∧
q
∈
Poly
⁡
S
→
q
∈
Poly
⁡
S
12
1
adantlr
⊢
φ
∧
q
∈
Poly
⁡
S
∧
x
∈
S
∧
y
∈
S
→
x
+
y
∈
S
13
2
adantlr
⊢
φ
∧
q
∈
Poly
⁡
S
∧
x
∈
S
∧
y
∈
S
→
x
⁢
y
∈
S
14
10
11
12
13
plymul
⊢
φ
∧
q
∈
Poly
⁡
S
→
G
×
f
q
∈
Poly
⁡
S
15
4
adantr
⊢
φ
∧
q
∈
Poly
⁡
S
→
−
1
∈
S
16
9
14
12
13
15
plysub
⊢
φ
∧
q
∈
Poly
⁡
S
→
F
−
f
G
×
f
q
∈
Poly
⁡
S
17
8
16
eqeltrid
⊢
φ
∧
q
∈
Poly
⁡
S
→
R
∈
Poly
⁡
S