Metamath Proof Explorer


Theorem plydivlem3

Description: Lemma for plydivex . Base case of induction. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses plydiv.pl φ x S y S x + y S
plydiv.tm φ x S y S x y S
plydiv.rc φ x S x 0 1 x S
plydiv.m1 φ 1 S
plydiv.f φ F Poly S
plydiv.g φ G Poly S
plydiv.z φ G 0 𝑝
plydiv.r R = F f G × f q
plydiv.0 φ F = 0 𝑝 deg F deg G < 0
Assertion plydivlem3 φ q Poly S R = 0 𝑝 deg R < deg G

Proof

Step Hyp Ref Expression
1 plydiv.pl φ x S y S x + y S
2 plydiv.tm φ x S y S x y S
3 plydiv.rc φ x S x 0 1 x S
4 plydiv.m1 φ 1 S
5 plydiv.f φ F Poly S
6 plydiv.g φ G Poly S
7 plydiv.z φ G 0 𝑝
8 plydiv.r R = F f G × f q
9 plydiv.0 φ F = 0 𝑝 deg F deg G < 0
10 plybss F Poly S S
11 ply0 S 0 𝑝 Poly S
12 5 10 11 3syl φ 0 𝑝 Poly S
13 cnex V
14 13 a1i φ V
15 plyf F Poly S F :
16 ffn F : F Fn
17 5 15 16 3syl φ F Fn
18 plyf G Poly S G :
19 ffn G : G Fn
20 6 18 19 3syl φ G Fn
21 plyf 0 𝑝 Poly S 0 𝑝 :
22 ffn 0 𝑝 : 0 𝑝 Fn
23 12 21 22 3syl φ 0 𝑝 Fn
24 inidm =
25 20 23 14 14 24 offn φ G × f 0 𝑝 Fn
26 eqidd φ z F z = F z
27 eqidd φ z G z = G z
28 0pval z 0 𝑝 z = 0
29 28 adantl φ z 0 𝑝 z = 0
30 20 23 14 14 24 27 29 ofval φ z G × f 0 𝑝 z = G z 0
31 6 18 syl φ G :
32 31 ffvelrnda φ z G z
33 32 mul01d φ z G z 0 = 0
34 30 33 eqtrd φ z G × f 0 𝑝 z = 0
35 5 15 syl φ F :
36 35 ffvelrnda φ z F z
37 36 subid1d φ z F z 0 = F z
38 14 17 25 17 26 34 37 offveq φ F f G × f 0 𝑝 = F
39 38 eqeq1d φ F f G × f 0 𝑝 = 0 𝑝 F = 0 𝑝
40 38 fveq2d φ deg F f G × f 0 𝑝 = deg F
41 dgrcl G Poly S deg G 0
42 6 41 syl φ deg G 0
43 42 nn0red φ deg G
44 43 recnd φ deg G
45 44 addid2d φ 0 + deg G = deg G
46 45 eqcomd φ deg G = 0 + deg G
47 40 46 breq12d φ deg F f G × f 0 𝑝 < deg G deg F < 0 + deg G
48 dgrcl F Poly S deg F 0
49 5 48 syl φ deg F 0
50 49 nn0red φ deg F
51 0red φ 0
52 50 43 51 ltsubaddd φ deg F deg G < 0 deg F < 0 + deg G
53 47 52 bitr4d φ deg F f G × f 0 𝑝 < deg G deg F deg G < 0
54 39 53 orbi12d φ F f G × f 0 𝑝 = 0 𝑝 deg F f G × f 0 𝑝 < deg G F = 0 𝑝 deg F deg G < 0
55 9 54 mpbird φ F f G × f 0 𝑝 = 0 𝑝 deg F f G × f 0 𝑝 < deg G
56 oveq2 q = 0 𝑝 G × f q = G × f 0 𝑝
57 56 oveq2d q = 0 𝑝 F f G × f q = F f G × f 0 𝑝
58 8 57 syl5eq q = 0 𝑝 R = F f G × f 0 𝑝
59 58 eqeq1d q = 0 𝑝 R = 0 𝑝 F f G × f 0 𝑝 = 0 𝑝
60 58 fveq2d q = 0 𝑝 deg R = deg F f G × f 0 𝑝
61 60 breq1d q = 0 𝑝 deg R < deg G deg F f G × f 0 𝑝 < deg G
62 59 61 orbi12d q = 0 𝑝 R = 0 𝑝 deg R < deg G F f G × f 0 𝑝 = 0 𝑝 deg F f G × f 0 𝑝 < deg G
63 62 rspcev 0 𝑝 Poly S F f G × f 0 𝑝 = 0 𝑝 deg F f G × f 0 𝑝 < deg G q Poly S R = 0 𝑝 deg R < deg G
64 12 55 63 syl2anc φ q Poly S R = 0 𝑝 deg R < deg G