Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|
2 |
|
simpll |
|
3 |
2
|
sseld |
|
4 |
|
simprll |
|
5 |
|
plyf |
|
6 |
4 5
|
syl |
|
7 |
6
|
ffnd |
|
8 |
7
|
adantr |
|
9 |
|
simprrl |
|
10 |
|
plyf |
|
11 |
9 10
|
syl |
|
12 |
11
|
ffnd |
|
13 |
12
|
adantr |
|
14 |
|
cnex |
|
15 |
14
|
a1i |
|
16 |
2
|
sselda |
|
17 |
|
fnfvof |
|
18 |
8 13 15 16 17
|
syl22anc |
|
19 |
6
|
adantr |
|
20 |
19 16
|
ffvelrnd |
|
21 |
|
simprlr |
|
22 |
|
simprrr |
|
23 |
21 22
|
eqtr4d |
|
24 |
23
|
adantr |
|
25 |
24
|
fveq1d |
|
26 |
|
fvres |
|
27 |
26
|
adantl |
|
28 |
|
fvres |
|
29 |
28
|
adantl |
|
30 |
25 27 29
|
3eqtr3d |
|
31 |
20 30
|
subeq0bd |
|
32 |
18 31
|
eqtrd |
|
33 |
32
|
ex |
|
34 |
3 33
|
jcad |
|
35 |
|
plysubcl |
|
36 |
4 9 35
|
syl2anc |
|
37 |
|
plyf |
|
38 |
|
ffn |
|
39 |
|
fniniseg |
|
40 |
36 37 38 39
|
4syl |
|
41 |
34 40
|
sylibrd |
|
42 |
41
|
ssrdv |
|
43 |
|
ssfi |
|
44 |
43
|
expcom |
|
45 |
42 44
|
syl |
|
46 |
1 45
|
mtod |
|
47 |
|
neqne |
|
48 |
|
eqid |
|
49 |
48
|
fta1 |
|
50 |
36 47 49
|
syl2an |
|
51 |
50
|
simpld |
|
52 |
51
|
ex |
|
53 |
46 52
|
mt3d |
|
54 |
|
df-0p |
|
55 |
53 54
|
eqtrdi |
|
56 |
|
ofsubeq0 |
|
57 |
14 6 11 56
|
mp3an2i |
|
58 |
55 57
|
mpbid |
|
59 |
58
|
ex |
|
60 |
59
|
alrimivv |
|
61 |
|
eleq1w |
|
62 |
|
reseq1 |
|
63 |
62
|
eqeq1d |
|
64 |
61 63
|
anbi12d |
|
65 |
64
|
mo4 |
|
66 |
60 65
|
sylibr |
|
67 |
|
plyssc |
|
68 |
67
|
sseli |
|
69 |
68
|
anim1i |
|
70 |
69
|
moimi |
|
71 |
66 70
|
syl |
|