Metamath Proof Explorer


Theorem plyf

Description: The polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion plyf F Poly S F :

Proof

Step Hyp Ref Expression
1 elply F Poly S S n 0 a S 0 0 F = z k = 0 n a k z k
2 1 simprbi F Poly S n 0 a S 0 0 F = z k = 0 n a k z k
3 fzfid F Poly S n 0 a S 0 0 z 0 n Fin
4 plybss F Poly S S
5 0cnd F Poly S 0
6 5 snssd F Poly S 0
7 4 6 unssd F Poly S S 0
8 7 ad2antrr F Poly S n 0 a S 0 0 z S 0
9 8 adantr F Poly S n 0 a S 0 0 z k 0 n S 0
10 simplrr F Poly S n 0 a S 0 0 z a S 0 0
11 cnex V
12 ssexg S 0 V S 0 V
13 8 11 12 sylancl F Poly S n 0 a S 0 0 z S 0 V
14 nn0ex 0 V
15 elmapg S 0 V 0 V a S 0 0 a : 0 S 0
16 13 14 15 sylancl F Poly S n 0 a S 0 0 z a S 0 0 a : 0 S 0
17 10 16 mpbid F Poly S n 0 a S 0 0 z a : 0 S 0
18 elfznn0 k 0 n k 0
19 ffvelrn a : 0 S 0 k 0 a k S 0
20 17 18 19 syl2an F Poly S n 0 a S 0 0 z k 0 n a k S 0
21 9 20 sseldd F Poly S n 0 a S 0 0 z k 0 n a k
22 simpr F Poly S n 0 a S 0 0 z z
23 expcl z k 0 z k
24 22 18 23 syl2an F Poly S n 0 a S 0 0 z k 0 n z k
25 21 24 mulcld F Poly S n 0 a S 0 0 z k 0 n a k z k
26 3 25 fsumcl F Poly S n 0 a S 0 0 z k = 0 n a k z k
27 26 fmpttd F Poly S n 0 a S 0 0 z k = 0 n a k z k :
28 feq1 F = z k = 0 n a k z k F : z k = 0 n a k z k :
29 27 28 syl5ibrcom F Poly S n 0 a S 0 0 F = z k = 0 n a k z k F :
30 29 rexlimdvva F Poly S n 0 a S 0 0 F = z k = 0 n a k z k F :
31 2 30 mpd F Poly S F :