Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Elementary properties of complex polynomials
plyid
Next ⟩
plyeq0lem
Metamath Proof Explorer
Ascii
Unicode
Theorem
plyid
Description:
The identity function is a polynomial.
(Contributed by
Mario Carneiro
, 17-Jul-2014)
Ref
Expression
Assertion
plyid
⊢
S
⊆
ℂ
∧
1
∈
S
→
X
p
∈
Poly
⁡
S
Proof
Step
Hyp
Ref
Expression
1
mptresid
⊢
I
↾
ℂ
=
z
∈
ℂ
⟼
z
2
df-idp
⊢
X
p
=
I
↾
ℂ
3
exp1
⊢
z
∈
ℂ
→
z
1
=
z
4
3
mpteq2ia
⊢
z
∈
ℂ
⟼
z
1
=
z
∈
ℂ
⟼
z
5
1
2
4
3eqtr4i
⊢
X
p
=
z
∈
ℂ
⟼
z
1
6
1nn0
⊢
1
∈
ℕ
0
7
plypow
⊢
S
⊆
ℂ
∧
1
∈
S
∧
1
∈
ℕ
0
→
z
∈
ℂ
⟼
z
1
∈
Poly
⁡
S
8
6
7
mp3an3
⊢
S
⊆
ℂ
∧
1
∈
S
→
z
∈
ℂ
⟼
z
1
∈
Poly
⁡
S
9
5
8
eqeltrid
⊢
S
⊆
ℂ
∧
1
∈
S
→
X
p
∈
Poly
⁡
S