Metamath Proof Explorer


Theorem plyid

Description: The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion plyid S 1 S X p Poly S

Proof

Step Hyp Ref Expression
1 mptresid I = z z
2 df-idp X p = I
3 exp1 z z 1 = z
4 3 mpteq2ia z z 1 = z z
5 1 2 4 3eqtr4i X p = z z 1
6 1nn0 1 0
7 plypow S 1 S 1 0 z z 1 Poly S
8 6 7 mp3an3 S 1 S z z 1 Poly S
9 5 8 eqeltrid S 1 S X p Poly S