Step |
Hyp |
Ref |
Expression |
1 |
|
plyadd.1 |
|
2 |
|
plyadd.2 |
|
3 |
|
plyadd.3 |
|
4 |
|
plymul.4 |
|
5 |
|
elply2 |
|
6 |
5
|
simprbi |
|
7 |
1 6
|
syl |
|
8 |
|
elply2 |
|
9 |
8
|
simprbi |
|
10 |
2 9
|
syl |
|
11 |
|
reeanv |
|
12 |
|
reeanv |
|
13 |
|
simp1l |
|
14 |
13 1
|
syl |
|
15 |
13 2
|
syl |
|
16 |
13 3
|
sylan |
|
17 |
|
simp1rl |
|
18 |
|
simp1rr |
|
19 |
|
simp2l |
|
20 |
|
simp2r |
|
21 |
|
simp3ll |
|
22 |
|
simp3rl |
|
23 |
|
simp3lr |
|
24 |
|
oveq1 |
|
25 |
24
|
oveq2d |
|
26 |
25
|
sumeq2sdv |
|
27 |
|
fveq2 |
|
28 |
|
oveq2 |
|
29 |
27 28
|
oveq12d |
|
30 |
29
|
cbvsumv |
|
31 |
26 30
|
eqtrdi |
|
32 |
31
|
cbvmptv |
|
33 |
23 32
|
eqtrdi |
|
34 |
|
simp3rr |
|
35 |
24
|
oveq2d |
|
36 |
35
|
sumeq2sdv |
|
37 |
|
fveq2 |
|
38 |
37 28
|
oveq12d |
|
39 |
38
|
cbvsumv |
|
40 |
36 39
|
eqtrdi |
|
41 |
40
|
cbvmptv |
|
42 |
34 41
|
eqtrdi |
|
43 |
13 4
|
sylan |
|
44 |
14 15 16 17 18 19 20 21 22 33 42 43
|
plymullem |
|
45 |
44
|
3expia |
|
46 |
45
|
rexlimdvva |
|
47 |
12 46
|
syl5bir |
|
48 |
47
|
rexlimdvva |
|
49 |
11 48
|
syl5bir |
|
50 |
7 10 49
|
mp2and |
|