Metamath Proof Explorer


Theorem plymul

Description: The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014)

Ref Expression
Hypotheses plyadd.1 φ F Poly S
plyadd.2 φ G Poly S
plyadd.3 φ x S y S x + y S
plymul.4 φ x S y S x y S
Assertion plymul φ F × f G Poly S

Proof

Step Hyp Ref Expression
1 plyadd.1 φ F Poly S
2 plyadd.2 φ G Poly S
3 plyadd.3 φ x S y S x + y S
4 plymul.4 φ x S y S x y S
5 elply2 F Poly S S m 0 a S 0 0 a m + 1 = 0 F = z k = 0 m a k z k
6 5 simprbi F Poly S m 0 a S 0 0 a m + 1 = 0 F = z k = 0 m a k z k
7 1 6 syl φ m 0 a S 0 0 a m + 1 = 0 F = z k = 0 m a k z k
8 elply2 G Poly S S n 0 b S 0 0 b n + 1 = 0 G = z k = 0 n b k z k
9 8 simprbi G Poly S n 0 b S 0 0 b n + 1 = 0 G = z k = 0 n b k z k
10 2 9 syl φ n 0 b S 0 0 b n + 1 = 0 G = z k = 0 n b k z k
11 reeanv m 0 n 0 a S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b S 0 0 b n + 1 = 0 G = z k = 0 n b k z k m 0 a S 0 0 a m + 1 = 0 F = z k = 0 m a k z k n 0 b S 0 0 b n + 1 = 0 G = z k = 0 n b k z k
12 reeanv a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k a S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b S 0 0 b n + 1 = 0 G = z k = 0 n b k z k
13 simp1l φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k φ
14 13 1 syl φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k F Poly S
15 13 2 syl φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k G Poly S
16 13 3 sylan φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k x S y S x + y S
17 simp1rl φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k m 0
18 simp1rr φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k n 0
19 simp2l φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k a S 0 0
20 simp2r φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k b S 0 0
21 simp3ll φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k a m + 1 = 0
22 simp3rl φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k b n + 1 = 0
23 simp3lr φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k F = z k = 0 m a k z k
24 oveq1 z = w z k = w k
25 24 oveq2d z = w a k z k = a k w k
26 25 sumeq2sdv z = w k = 0 m a k z k = k = 0 m a k w k
27 fveq2 k = j a k = a j
28 oveq2 k = j w k = w j
29 27 28 oveq12d k = j a k w k = a j w j
30 29 cbvsumv k = 0 m a k w k = j = 0 m a j w j
31 26 30 eqtrdi z = w k = 0 m a k z k = j = 0 m a j w j
32 31 cbvmptv z k = 0 m a k z k = w j = 0 m a j w j
33 23 32 eqtrdi φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k F = w j = 0 m a j w j
34 simp3rr φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k G = z k = 0 n b k z k
35 24 oveq2d z = w b k z k = b k w k
36 35 sumeq2sdv z = w k = 0 n b k z k = k = 0 n b k w k
37 fveq2 k = j b k = b j
38 37 28 oveq12d k = j b k w k = b j w j
39 38 cbvsumv k = 0 n b k w k = j = 0 n b j w j
40 36 39 eqtrdi z = w k = 0 n b k z k = j = 0 n b j w j
41 40 cbvmptv z k = 0 n b k z k = w j = 0 n b j w j
42 34 41 eqtrdi φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k G = w j = 0 n b j w j
43 13 4 sylan φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k x S y S x y S
44 14 15 16 17 18 19 20 21 22 33 42 43 plymullem φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k F × f G Poly S
45 44 3expia φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k F × f G Poly S
46 45 rexlimdvva φ m 0 n 0 a S 0 0 b S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b n + 1 = 0 G = z k = 0 n b k z k F × f G Poly S
47 12 46 syl5bir φ m 0 n 0 a S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b S 0 0 b n + 1 = 0 G = z k = 0 n b k z k F × f G Poly S
48 47 rexlimdvva φ m 0 n 0 a S 0 0 a m + 1 = 0 F = z k = 0 m a k z k b S 0 0 b n + 1 = 0 G = z k = 0 n b k z k F × f G Poly S
49 11 48 syl5bir φ m 0 a S 0 0 a m + 1 = 0 F = z k = 0 m a k z k n 0 b S 0 0 b n + 1 = 0 G = z k = 0 n b k z k F × f G Poly S
50 7 10 49 mp2and φ F × f G Poly S