Step |
Hyp |
Ref |
Expression |
1 |
|
dgrcl |
|
2 |
|
dgrcl |
|
3 |
|
nn0addcl |
|
4 |
1 2 3
|
syl2an |
|
5 |
|
c0ex |
|
6 |
5
|
fvconst2 |
|
7 |
4 6
|
syl |
|
8 |
|
fveq2 |
|
9 |
|
coe0 |
|
10 |
8 9
|
eqtrdi |
|
11 |
10
|
fveq1d |
|
12 |
11
|
eqeq1d |
|
13 |
7 12
|
syl5ibrcom |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
14 15 16 17
|
coemulhi |
|
19 |
18
|
eqeq1d |
|
20 |
14
|
coef3 |
|
21 |
20
|
adantr |
|
22 |
1
|
adantr |
|
23 |
21 22
|
ffvelrnd |
|
24 |
15
|
coef3 |
|
25 |
24
|
adantl |
|
26 |
2
|
adantl |
|
27 |
25 26
|
ffvelrnd |
|
28 |
23 27
|
mul0ord |
|
29 |
19 28
|
bitrd |
|
30 |
13 29
|
sylibd |
|
31 |
16 14
|
dgreq0 |
|
32 |
31
|
adantr |
|
33 |
17 15
|
dgreq0 |
|
34 |
33
|
adantl |
|
35 |
32 34
|
orbi12d |
|
36 |
30 35
|
sylibrd |
|
37 |
|
cnex |
|
38 |
37
|
a1i |
|
39 |
|
plyf |
|
40 |
39
|
adantl |
|
41 |
|
0cnd |
|
42 |
|
mul02 |
|
43 |
42
|
adantl |
|
44 |
38 40 41 41 43
|
caofid2 |
|
45 |
|
id |
|
46 |
|
df-0p |
|
47 |
45 46
|
eqtrdi |
|
48 |
47
|
oveq1d |
|
49 |
48
|
eqeq1d |
|
50 |
44 49
|
syl5ibrcom |
|
51 |
|
plyf |
|
52 |
51
|
adantr |
|
53 |
|
mul01 |
|
54 |
53
|
adantl |
|
55 |
38 52 41 41 54
|
caofid1 |
|
56 |
|
id |
|
57 |
56 46
|
eqtrdi |
|
58 |
57
|
oveq2d |
|
59 |
58
|
eqeq1d |
|
60 |
55 59
|
syl5ibrcom |
|
61 |
50 60
|
jaod |
|
62 |
46
|
eqeq2i |
|
63 |
61 62
|
syl6ibr |
|
64 |
36 63
|
impbid |
|