Step |
Hyp |
Ref |
Expression |
1 |
|
plyadd.1 |
|
2 |
|
plyadd.2 |
|
3 |
|
plyadd.3 |
|
4 |
|
plyadd.m |
|
5 |
|
plyadd.n |
|
6 |
|
plyadd.a |
|
7 |
|
plyadd.b |
|
8 |
|
plyadd.a2 |
|
9 |
|
plyadd.b2 |
|
10 |
|
plyadd.f |
|
11 |
|
plyadd.g |
|
12 |
|
plymul.x |
|
13 |
|
plybss |
|
14 |
1 13
|
syl |
|
15 |
|
0cnd |
|
16 |
15
|
snssd |
|
17 |
14 16
|
unssd |
|
18 |
|
cnex |
|
19 |
|
ssexg |
|
20 |
17 18 19
|
sylancl |
|
21 |
|
nn0ex |
|
22 |
|
elmapg |
|
23 |
20 21 22
|
sylancl |
|
24 |
6 23
|
mpbid |
|
25 |
24 17
|
fssd |
|
26 |
|
elmapg |
|
27 |
20 21 26
|
sylancl |
|
28 |
7 27
|
mpbid |
|
29 |
28 17
|
fssd |
|
30 |
1 2 4 5 25 29 8 9 10 11
|
plymullem1 |
|
31 |
4 5
|
nn0addcld |
|
32 |
|
eqid |
|
33 |
14 32 3
|
un0addcl |
|
34 |
|
fzfid |
|
35 |
|
elfznn0 |
|
36 |
|
ffvelrn |
|
37 |
24 35 36
|
syl2an |
|
38 |
|
fznn0sub |
|
39 |
|
ffvelrn |
|
40 |
28 38 39
|
syl2an |
|
41 |
37 40
|
jca |
|
42 |
14 32 12
|
un0mulcl |
|
43 |
42
|
caovclg |
|
44 |
41 43
|
syldan |
|
45 |
|
ssun2 |
|
46 |
|
c0ex |
|
47 |
46
|
snss |
|
48 |
45 47
|
mpbir |
|
49 |
48
|
a1i |
|
50 |
17 33 34 44 49
|
fsumcllem |
|
51 |
50
|
adantr |
|
52 |
17 31 51
|
elplyd |
|
53 |
30 52
|
eqeltrd |
|
54 |
|
plyun0 |
|
55 |
53 54
|
eleqtrdi |
|