| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyadd.1 |  | 
						
							| 2 |  | plyadd.2 |  | 
						
							| 3 |  | plyadd.3 |  | 
						
							| 4 |  | plyadd.m |  | 
						
							| 5 |  | plyadd.n |  | 
						
							| 6 |  | plyadd.a |  | 
						
							| 7 |  | plyadd.b |  | 
						
							| 8 |  | plyadd.a2 |  | 
						
							| 9 |  | plyadd.b2 |  | 
						
							| 10 |  | plyadd.f |  | 
						
							| 11 |  | plyadd.g |  | 
						
							| 12 |  | plymul.x |  | 
						
							| 13 |  | plybss |  | 
						
							| 14 | 1 13 | syl |  | 
						
							| 15 |  | 0cnd |  | 
						
							| 16 | 15 | snssd |  | 
						
							| 17 | 14 16 | unssd |  | 
						
							| 18 |  | cnex |  | 
						
							| 19 |  | ssexg |  | 
						
							| 20 | 17 18 19 | sylancl |  | 
						
							| 21 |  | nn0ex |  | 
						
							| 22 |  | elmapg |  | 
						
							| 23 | 20 21 22 | sylancl |  | 
						
							| 24 | 6 23 | mpbid |  | 
						
							| 25 | 24 17 | fssd |  | 
						
							| 26 |  | elmapg |  | 
						
							| 27 | 20 21 26 | sylancl |  | 
						
							| 28 | 7 27 | mpbid |  | 
						
							| 29 | 28 17 | fssd |  | 
						
							| 30 | 1 2 4 5 25 29 8 9 10 11 | plymullem1 |  | 
						
							| 31 | 4 5 | nn0addcld |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 14 32 3 | un0addcl |  | 
						
							| 34 |  | fzfid |  | 
						
							| 35 |  | elfznn0 |  | 
						
							| 36 |  | ffvelcdm |  | 
						
							| 37 | 24 35 36 | syl2an |  | 
						
							| 38 |  | fznn0sub |  | 
						
							| 39 |  | ffvelcdm |  | 
						
							| 40 | 28 38 39 | syl2an |  | 
						
							| 41 | 37 40 | jca |  | 
						
							| 42 | 14 32 12 | un0mulcl |  | 
						
							| 43 | 42 | caovclg |  | 
						
							| 44 | 41 43 | syldan |  | 
						
							| 45 |  | ssun2 |  | 
						
							| 46 |  | c0ex |  | 
						
							| 47 | 46 | snss |  | 
						
							| 48 | 45 47 | mpbir |  | 
						
							| 49 | 48 | a1i |  | 
						
							| 50 | 17 33 34 44 49 | fsumcllem |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 | 17 31 51 | elplyd |  | 
						
							| 53 | 30 52 | eqeltrd |  | 
						
							| 54 |  | plyun0 |  | 
						
							| 55 | 53 54 | eleqtrdi |  |