Metamath Proof Explorer


Theorem plypf1

Description: Write the set of complex polynomials in a subring in terms of the abstract polynomial construction. (Contributed by Mario Carneiro, 3-Jul-2015) (Proof shortened by AV, 29-Sep-2019)

Ref Expression
Hypotheses plypf1.r R = fld 𝑠 S
plypf1.p P = Poly 1 R
plypf1.a A = Base P
plypf1.e E = eval 1 fld
Assertion plypf1 S SubRing fld Poly S = E A

Proof

Step Hyp Ref Expression
1 plypf1.r R = fld 𝑠 S
2 plypf1.p P = Poly 1 R
3 plypf1.a A = Base P
4 plypf1.e E = eval 1 fld
5 elply f Poly S S n 0 a S 0 0 f = z k = 0 n a k z k
6 5 simprbi f Poly S n 0 a S 0 0 f = z k = 0 n a k z k
7 eqid fld 𝑠 = fld 𝑠
8 cnfldbas = Base fld
9 eqid 0 fld 𝑠 = 0 fld 𝑠
10 cnex V
11 10 a1i S SubRing fld n 0 a S 0 0 V
12 fzfid S SubRing fld n 0 a S 0 0 0 n Fin
13 cnring fld Ring
14 ringcmn fld Ring fld CMnd
15 13 14 mp1i S SubRing fld n 0 a S 0 0 fld CMnd
16 8 subrgss S SubRing fld S
17 16 ad2antrr S SubRing fld n 0 a S 0 0 k 0 n S
18 elmapi a S 0 0 a : 0 S 0
19 18 ad2antll S SubRing fld n 0 a S 0 0 a : 0 S 0
20 subrgsubg S SubRing fld S SubGrp fld
21 cnfld0 0 = 0 fld
22 21 subg0cl S SubGrp fld 0 S
23 20 22 syl S SubRing fld 0 S
24 23 adantr S SubRing fld n 0 a S 0 0 0 S
25 24 snssd S SubRing fld n 0 a S 0 0 0 S
26 ssequn2 0 S S 0 = S
27 25 26 sylib S SubRing fld n 0 a S 0 0 S 0 = S
28 27 feq3d S SubRing fld n 0 a S 0 0 a : 0 S 0 a : 0 S
29 19 28 mpbid S SubRing fld n 0 a S 0 0 a : 0 S
30 elfznn0 k 0 n k 0
31 ffvelrn a : 0 S k 0 a k S
32 29 30 31 syl2an S SubRing fld n 0 a S 0 0 k 0 n a k S
33 17 32 sseldd S SubRing fld n 0 a S 0 0 k 0 n a k
34 33 adantrl S SubRing fld n 0 a S 0 0 z k 0 n a k
35 simprl S SubRing fld n 0 a S 0 0 z k 0 n z
36 30 ad2antll S SubRing fld n 0 a S 0 0 z k 0 n k 0
37 expcl z k 0 z k
38 35 36 37 syl2anc S SubRing fld n 0 a S 0 0 z k 0 n z k
39 34 38 mulcld S SubRing fld n 0 a S 0 0 z k 0 n a k z k
40 eqid k 0 n z a k z k = k 0 n z a k z k
41 10 mptex z a k z k V
42 41 a1i S SubRing fld n 0 a S 0 0 k 0 n z a k z k V
43 fvex 0 fld 𝑠 V
44 43 a1i S SubRing fld n 0 a S 0 0 0 fld 𝑠 V
45 40 12 42 44 fsuppmptdm S SubRing fld n 0 a S 0 0 finSupp 0 fld 𝑠 k 0 n z a k z k
46 7 8 9 11 12 15 39 45 pwsgsum S SubRing fld n 0 a S 0 0 fld 𝑠 k = 0 n z a k z k = z fld k = 0 n a k z k
47 fzfid S SubRing fld n 0 a S 0 0 z 0 n Fin
48 39 anassrs S SubRing fld n 0 a S 0 0 z k 0 n a k z k
49 47 48 gsumfsum S SubRing fld n 0 a S 0 0 z fld k = 0 n a k z k = k = 0 n a k z k
50 49 mpteq2dva S SubRing fld n 0 a S 0 0 z fld k = 0 n a k z k = z k = 0 n a k z k
51 46 50 eqtrd S SubRing fld n 0 a S 0 0 fld 𝑠 k = 0 n z a k z k = z k = 0 n a k z k
52 7 pwsring fld Ring V fld 𝑠 Ring
53 13 10 52 mp2an fld 𝑠 Ring
54 ringcmn fld 𝑠 Ring fld 𝑠 CMnd
55 53 54 mp1i S SubRing fld n 0 a S 0 0 fld 𝑠 CMnd
56 cncrng fld CRing
57 eqid Poly 1 fld = Poly 1 fld
58 4 57 7 8 evl1rhm fld CRing E Poly 1 fld RingHom fld 𝑠
59 56 58 ax-mp E Poly 1 fld RingHom fld 𝑠
60 57 1 2 3 subrgply1 S SubRing fld A SubRing Poly 1 fld
61 60 adantr S SubRing fld n 0 a S 0 0 A SubRing Poly 1 fld
62 rhmima E Poly 1 fld RingHom fld 𝑠 A SubRing Poly 1 fld E A SubRing fld 𝑠
63 59 61 62 sylancr S SubRing fld n 0 a S 0 0 E A SubRing fld 𝑠
64 subrgsubg E A SubRing fld 𝑠 E A SubGrp fld 𝑠
65 subgsubm E A SubGrp fld 𝑠 E A SubMnd fld 𝑠
66 63 64 65 3syl S SubRing fld n 0 a S 0 0 E A SubMnd fld 𝑠
67 eqid Base fld 𝑠 = Base fld 𝑠
68 13 a1i S SubRing fld n 0 a S 0 0 k 0 n fld Ring
69 10 a1i S SubRing fld n 0 a S 0 0 k 0 n V
70 fconst6g a k × a k :
71 33 70 syl S SubRing fld n 0 a S 0 0 k 0 n × a k :
72 7 8 67 pwselbasb fld Ring V × a k Base fld 𝑠 × a k :
73 13 10 72 mp2an × a k Base fld 𝑠 × a k :
74 71 73 sylibr S SubRing fld n 0 a S 0 0 k 0 n × a k Base fld 𝑠
75 38 anass1rs S SubRing fld n 0 a S 0 0 k 0 n z z k
76 75 fmpttd S SubRing fld n 0 a S 0 0 k 0 n z z k :
77 7 8 67 pwselbasb fld Ring V z z k Base fld 𝑠 z z k :
78 13 10 77 mp2an z z k Base fld 𝑠 z z k :
79 76 78 sylibr S SubRing fld n 0 a S 0 0 k 0 n z z k Base fld 𝑠
80 cnfldmul × = fld
81 eqid fld 𝑠 = fld 𝑠
82 7 67 68 69 74 79 80 81 pwsmulrval S SubRing fld n 0 a S 0 0 k 0 n × a k fld 𝑠 z z k = × a k × f z z k
83 33 adantr S SubRing fld n 0 a S 0 0 k 0 n z a k
84 fconstmpt × a k = z a k
85 84 a1i S SubRing fld n 0 a S 0 0 k 0 n × a k = z a k
86 eqidd S SubRing fld n 0 a S 0 0 k 0 n z z k = z z k
87 69 83 75 85 86 offval2 S SubRing fld n 0 a S 0 0 k 0 n × a k × f z z k = z a k z k
88 82 87 eqtrd S SubRing fld n 0 a S 0 0 k 0 n × a k fld 𝑠 z z k = z a k z k
89 63 adantr S SubRing fld n 0 a S 0 0 k 0 n E A SubRing fld 𝑠
90 eqid algSc Poly 1 fld = algSc Poly 1 fld
91 4 57 8 90 evl1sca fld CRing a k E algSc Poly 1 fld a k = × a k
92 56 33 91 sylancr S SubRing fld n 0 a S 0 0 k 0 n E algSc Poly 1 fld a k = × a k
93 eqid Base Poly 1 fld = Base Poly 1 fld
94 93 67 rhmf E Poly 1 fld RingHom fld 𝑠 E : Base Poly 1 fld Base fld 𝑠
95 59 94 ax-mp E : Base Poly 1 fld Base fld 𝑠
96 ffn E : Base Poly 1 fld Base fld 𝑠 E Fn Base Poly 1 fld
97 95 96 mp1i S SubRing fld n 0 a S 0 0 k 0 n E Fn Base Poly 1 fld
98 93 subrgss A SubRing Poly 1 fld A Base Poly 1 fld
99 60 98 syl S SubRing fld A Base Poly 1 fld
100 99 ad2antrr S SubRing fld n 0 a S 0 0 k 0 n A Base Poly 1 fld
101 simpll S SubRing fld n 0 a S 0 0 k 0 n S SubRing fld
102 57 90 1 2 101 3 8 33 subrg1asclcl S SubRing fld n 0 a S 0 0 k 0 n algSc Poly 1 fld a k A a k S
103 32 102 mpbird S SubRing fld n 0 a S 0 0 k 0 n algSc Poly 1 fld a k A
104 fnfvima E Fn Base Poly 1 fld A Base Poly 1 fld algSc Poly 1 fld a k A E algSc Poly 1 fld a k E A
105 97 100 103 104 syl3anc S SubRing fld n 0 a S 0 0 k 0 n E algSc Poly 1 fld a k E A
106 92 105 eqeltrrd S SubRing fld n 0 a S 0 0 k 0 n × a k E A
107 67 subrgss E A SubRing fld 𝑠 E A Base fld 𝑠
108 89 107 syl S SubRing fld n 0 a S 0 0 k 0 n E A Base fld 𝑠
109 60 ad2antrr S SubRing fld n 0 a S 0 0 k 0 n A SubRing Poly 1 fld
110 eqid mulGrp Poly 1 fld = mulGrp Poly 1 fld
111 110 subrgsubm A SubRing Poly 1 fld A SubMnd mulGrp Poly 1 fld
112 109 111 syl S SubRing fld n 0 a S 0 0 k 0 n A SubMnd mulGrp Poly 1 fld
113 30 adantl S SubRing fld n 0 a S 0 0 k 0 n k 0
114 eqid var 1 fld = var 1 fld
115 114 101 1 2 3 subrgvr1cl S SubRing fld n 0 a S 0 0 k 0 n var 1 fld A
116 eqid mulGrp Poly 1 fld = mulGrp Poly 1 fld
117 116 submmulgcl A SubMnd mulGrp Poly 1 fld k 0 var 1 fld A k mulGrp Poly 1 fld var 1 fld A
118 112 113 115 117 syl3anc S SubRing fld n 0 a S 0 0 k 0 n k mulGrp Poly 1 fld var 1 fld A
119 fnfvima E Fn Base Poly 1 fld A Base Poly 1 fld k mulGrp Poly 1 fld var 1 fld A E k mulGrp Poly 1 fld var 1 fld E A
120 97 100 118 119 syl3anc S SubRing fld n 0 a S 0 0 k 0 n E k mulGrp Poly 1 fld var 1 fld E A
121 108 120 sseldd S SubRing fld n 0 a S 0 0 k 0 n E k mulGrp Poly 1 fld var 1 fld Base fld 𝑠
122 7 8 67 68 69 121 pwselbas S SubRing fld n 0 a S 0 0 k 0 n E k mulGrp Poly 1 fld var 1 fld :
123 122 feqmptd S SubRing fld n 0 a S 0 0 k 0 n E k mulGrp Poly 1 fld var 1 fld = z E k mulGrp Poly 1 fld var 1 fld z
124 56 a1i S SubRing fld n 0 a S 0 0 k 0 n z fld CRing
125 simpr S SubRing fld n 0 a S 0 0 k 0 n z z
126 4 114 8 57 93 124 125 evl1vard S SubRing fld n 0 a S 0 0 k 0 n z var 1 fld Base Poly 1 fld E var 1 fld z = z
127 eqid mulGrp fld = mulGrp fld
128 113 adantr S SubRing fld n 0 a S 0 0 k 0 n z k 0
129 4 57 8 93 124 125 126 116 127 128 evl1expd S SubRing fld n 0 a S 0 0 k 0 n z k mulGrp Poly 1 fld var 1 fld Base Poly 1 fld E k mulGrp Poly 1 fld var 1 fld z = k mulGrp fld z
130 129 simprd S SubRing fld n 0 a S 0 0 k 0 n z E k mulGrp Poly 1 fld var 1 fld z = k mulGrp fld z
131 cnfldexp z k 0 k mulGrp fld z = z k
132 125 128 131 syl2anc S SubRing fld n 0 a S 0 0 k 0 n z k mulGrp fld z = z k
133 130 132 eqtrd S SubRing fld n 0 a S 0 0 k 0 n z E k mulGrp Poly 1 fld var 1 fld z = z k
134 133 mpteq2dva S SubRing fld n 0 a S 0 0 k 0 n z E k mulGrp Poly 1 fld var 1 fld z = z z k
135 123 134 eqtrd S SubRing fld n 0 a S 0 0 k 0 n E k mulGrp Poly 1 fld var 1 fld = z z k
136 135 120 eqeltrrd S SubRing fld n 0 a S 0 0 k 0 n z z k E A
137 81 subrgmcl E A SubRing fld 𝑠 × a k E A z z k E A × a k fld 𝑠 z z k E A
138 89 106 136 137 syl3anc S SubRing fld n 0 a S 0 0 k 0 n × a k fld 𝑠 z z k E A
139 88 138 eqeltrrd S SubRing fld n 0 a S 0 0 k 0 n z a k z k E A
140 139 fmpttd S SubRing fld n 0 a S 0 0 k 0 n z a k z k : 0 n E A
141 40 12 139 44 fsuppmptdm S SubRing fld n 0 a S 0 0 finSupp 0 fld 𝑠 k 0 n z a k z k
142 9 55 12 66 140 141 gsumsubmcl S SubRing fld n 0 a S 0 0 fld 𝑠 k = 0 n z a k z k E A
143 51 142 eqeltrrd S SubRing fld n 0 a S 0 0 z k = 0 n a k z k E A
144 eleq1 f = z k = 0 n a k z k f E A z k = 0 n a k z k E A
145 143 144 syl5ibrcom S SubRing fld n 0 a S 0 0 f = z k = 0 n a k z k f E A
146 145 rexlimdvva S SubRing fld n 0 a S 0 0 f = z k = 0 n a k z k f E A
147 6 146 syl5 S SubRing fld f Poly S f E A
148 ffun E : Base Poly 1 fld Base fld 𝑠 Fun E
149 95 148 ax-mp Fun E
150 fvelima Fun E f E A a A E a = f
151 149 150 mpan f E A a A E a = f
152 99 sselda S SubRing fld a A a Base Poly 1 fld
153 eqid Poly 1 fld = Poly 1 fld
154 eqid coe 1 a = coe 1 a
155 57 114 93 153 110 116 154 ply1coe fld Ring a Base Poly 1 fld a = Poly 1 fld k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld
156 13 152 155 sylancr S SubRing fld a A a = Poly 1 fld k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld
157 156 fveq2d S SubRing fld a A E a = E Poly 1 fld k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld
158 eqid 0 Poly 1 fld = 0 Poly 1 fld
159 57 ply1ring fld Ring Poly 1 fld Ring
160 13 159 ax-mp Poly 1 fld Ring
161 ringcmn Poly 1 fld Ring Poly 1 fld CMnd
162 160 161 mp1i S SubRing fld a A Poly 1 fld CMnd
163 ringmnd fld 𝑠 Ring fld 𝑠 Mnd
164 53 163 mp1i S SubRing fld a A fld 𝑠 Mnd
165 nn0ex 0 V
166 165 a1i S SubRing fld a A 0 V
167 rhmghm E Poly 1 fld RingHom fld 𝑠 E Poly 1 fld GrpHom fld 𝑠
168 59 167 ax-mp E Poly 1 fld GrpHom fld 𝑠
169 ghmmhm E Poly 1 fld GrpHom fld 𝑠 E Poly 1 fld MndHom fld 𝑠
170 168 169 mp1i S SubRing fld a A E Poly 1 fld MndHom fld 𝑠
171 57 ply1lmod fld Ring Poly 1 fld LMod
172 13 171 mp1i S SubRing fld a A k 0 Poly 1 fld LMod
173 16 ad2antrr S SubRing fld a A k 0 S
174 eqid Base R = Base R
175 154 3 2 174 coe1f a A coe 1 a : 0 Base R
176 1 subrgbas S SubRing fld S = Base R
177 176 feq3d S SubRing fld coe 1 a : 0 S coe 1 a : 0 Base R
178 175 177 syl5ibr S SubRing fld a A coe 1 a : 0 S
179 178 imp S SubRing fld a A coe 1 a : 0 S
180 179 ffvelrnda S SubRing fld a A k 0 coe 1 a k S
181 173 180 sseldd S SubRing fld a A k 0 coe 1 a k
182 110 ringmgp Poly 1 fld Ring mulGrp Poly 1 fld Mnd
183 160 182 mp1i S SubRing fld a A k 0 mulGrp Poly 1 fld Mnd
184 simpr S SubRing fld a A k 0 k 0
185 114 57 93 vr1cl fld Ring var 1 fld Base Poly 1 fld
186 13 185 mp1i S SubRing fld a A k 0 var 1 fld Base Poly 1 fld
187 110 93 mgpbas Base Poly 1 fld = Base mulGrp Poly 1 fld
188 187 116 mulgnn0cl mulGrp Poly 1 fld Mnd k 0 var 1 fld Base Poly 1 fld k mulGrp Poly 1 fld var 1 fld Base Poly 1 fld
189 183 184 186 188 syl3anc S SubRing fld a A k 0 k mulGrp Poly 1 fld var 1 fld Base Poly 1 fld
190 57 ply1sca fld Ring fld = Scalar Poly 1 fld
191 13 190 ax-mp fld = Scalar Poly 1 fld
192 93 191 153 8 lmodvscl Poly 1 fld LMod coe 1 a k k mulGrp Poly 1 fld var 1 fld Base Poly 1 fld coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld Base Poly 1 fld
193 172 181 189 192 syl3anc S SubRing fld a A k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld Base Poly 1 fld
194 193 fmpttd S SubRing fld a A k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld : 0 Base Poly 1 fld
195 165 mptex k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld V
196 funmpt Fun k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld
197 fvex 0 Poly 1 fld V
198 195 196 197 3pm3.2i k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld V Fun k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld 0 Poly 1 fld V
199 198 a1i S SubRing fld a A k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld V Fun k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld 0 Poly 1 fld V
200 154 93 57 21 coe1sfi a Base Poly 1 fld finSupp 0 coe 1 a
201 152 200 syl S SubRing fld a A finSupp 0 coe 1 a
202 201 fsuppimpd S SubRing fld a A coe 1 a supp 0 Fin
203 179 feqmptd S SubRing fld a A coe 1 a = k 0 coe 1 a k
204 203 oveq1d S SubRing fld a A coe 1 a supp 0 = k 0 coe 1 a k supp 0
205 eqimss2 coe 1 a supp 0 = k 0 coe 1 a k supp 0 k 0 coe 1 a k supp 0 coe 1 a supp 0
206 204 205 syl S SubRing fld a A k 0 coe 1 a k supp 0 coe 1 a supp 0
207 13 171 mp1i S SubRing fld a A Poly 1 fld LMod
208 93 191 153 21 158 lmod0vs Poly 1 fld LMod x Base Poly 1 fld 0 Poly 1 fld x = 0 Poly 1 fld
209 207 208 sylan S SubRing fld a A x Base Poly 1 fld 0 Poly 1 fld x = 0 Poly 1 fld
210 c0ex 0 V
211 210 a1i S SubRing fld a A 0 V
212 206 209 180 189 211 suppssov1 S SubRing fld a A k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld supp 0 Poly 1 fld coe 1 a supp 0
213 suppssfifsupp k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld V Fun k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld 0 Poly 1 fld V coe 1 a supp 0 Fin k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld supp 0 Poly 1 fld coe 1 a supp 0 finSupp 0 Poly 1 fld k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld
214 199 202 212 213 syl12anc S SubRing fld a A finSupp 0 Poly 1 fld k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld
215 93 158 162 164 166 170 194 214 gsummhm S SubRing fld a A fld 𝑠 E k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld = E Poly 1 fld k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld
216 95 a1i S SubRing fld a A E : Base Poly 1 fld Base fld 𝑠
217 216 193 cofmpt S SubRing fld a A E k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld = k 0 E coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld
218 13 a1i S SubRing fld a A k 0 fld Ring
219 10 a1i S SubRing fld a A k 0 V
220 95 ffvelrni coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld Base Poly 1 fld E coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld Base fld 𝑠
221 193 220 syl S SubRing fld a A k 0 E coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld Base fld 𝑠
222 7 8 67 218 219 221 pwselbas S SubRing fld a A k 0 E coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld :
223 222 feqmptd S SubRing fld a A k 0 E coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld = z E coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld z
224 56 a1i S SubRing fld a A k 0 z fld CRing
225 simpr S SubRing fld a A k 0 z z
226 4 114 8 57 93 224 225 evl1vard S SubRing fld a A k 0 z var 1 fld Base Poly 1 fld E var 1 fld z = z
227 184 adantr S SubRing fld a A k 0 z k 0
228 4 57 8 93 224 225 226 116 127 227 evl1expd S SubRing fld a A k 0 z k mulGrp Poly 1 fld var 1 fld Base Poly 1 fld E k mulGrp Poly 1 fld var 1 fld z = k mulGrp fld z
229 225 227 131 syl2anc S SubRing fld a A k 0 z k mulGrp fld z = z k
230 229 eqeq2d S SubRing fld a A k 0 z E k mulGrp Poly 1 fld var 1 fld z = k mulGrp fld z E k mulGrp Poly 1 fld var 1 fld z = z k
231 230 anbi2d S SubRing fld a A k 0 z k mulGrp Poly 1 fld var 1 fld Base Poly 1 fld E k mulGrp Poly 1 fld var 1 fld z = k mulGrp fld z k mulGrp Poly 1 fld var 1 fld Base Poly 1 fld E k mulGrp Poly 1 fld var 1 fld z = z k
232 228 231 mpbid S SubRing fld a A k 0 z k mulGrp Poly 1 fld var 1 fld Base Poly 1 fld E k mulGrp Poly 1 fld var 1 fld z = z k
233 181 adantr S SubRing fld a A k 0 z coe 1 a k
234 4 57 8 93 224 225 232 233 153 80 evl1vsd S SubRing fld a A k 0 z coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld Base Poly 1 fld E coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld z = coe 1 a k z k
235 234 simprd S SubRing fld a A k 0 z E coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld z = coe 1 a k z k
236 235 mpteq2dva S SubRing fld a A k 0 z E coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld z = z coe 1 a k z k
237 223 236 eqtrd S SubRing fld a A k 0 E coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld = z coe 1 a k z k
238 237 mpteq2dva S SubRing fld a A k 0 E coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld = k 0 z coe 1 a k z k
239 217 238 eqtrd S SubRing fld a A E k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld = k 0 z coe 1 a k z k
240 239 oveq2d S SubRing fld a A fld 𝑠 E k 0 coe 1 a k Poly 1 fld k mulGrp Poly 1 fld var 1 fld = fld 𝑠 k 0 z coe 1 a k z k
241 157 215 240 3eqtr2d S SubRing fld a A E a = fld 𝑠 k 0 z coe 1 a k z k
242 10 a1i S SubRing fld a A V
243 13 14 mp1i S SubRing fld a A fld CMnd
244 181 adantlr S SubRing fld a A z k 0 coe 1 a k
245 37 adantll S SubRing fld a A z k 0 z k
246 244 245 mulcld S SubRing fld a A z k 0 coe 1 a k z k
247 246 anasss S SubRing fld a A z k 0 coe 1 a k z k
248 165 mptex k 0 z coe 1 a k z k V
249 funmpt Fun k 0 z coe 1 a k z k
250 248 249 43 3pm3.2i k 0 z coe 1 a k z k V Fun k 0 z coe 1 a k z k 0 fld 𝑠 V
251 250 a1i S SubRing fld a A k 0 z coe 1 a k z k V Fun k 0 z coe 1 a k z k 0 fld 𝑠 V
252 fzfid S SubRing fld a A 0 if 0 deg 1 fld a deg 1 fld a 0 Fin
253 eldifn k 0 0 if 0 deg 1 fld a deg 1 fld a 0 ¬ k 0 if 0 deg 1 fld a deg 1 fld a 0
254 253 adantl S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 ¬ k 0 if 0 deg 1 fld a deg 1 fld a 0
255 152 ad2antrr S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 a Base Poly 1 fld
256 eldifi k 0 0 if 0 deg 1 fld a deg 1 fld a 0 k 0
257 256 adantl S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 k 0
258 eqid deg 1 fld = deg 1 fld
259 258 57 93 21 154 deg1ge a Base Poly 1 fld k 0 coe 1 a k 0 k deg 1 fld a
260 259 3expia a Base Poly 1 fld k 0 coe 1 a k 0 k deg 1 fld a
261 255 257 260 syl2anc S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k 0 k deg 1 fld a
262 0xr 0 *
263 258 57 93 deg1xrcl a Base Poly 1 fld deg 1 fld a *
264 152 263 syl S SubRing fld a A deg 1 fld a *
265 264 ad2antrr S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 deg 1 fld a *
266 xrmax2 0 * deg 1 fld a * deg 1 fld a if 0 deg 1 fld a deg 1 fld a 0
267 262 265 266 sylancr S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 deg 1 fld a if 0 deg 1 fld a deg 1 fld a 0
268 257 nn0red S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 k
269 268 rexrd S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 k *
270 ifcl deg 1 fld a * 0 * if 0 deg 1 fld a deg 1 fld a 0 *
271 265 262 270 sylancl S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 if 0 deg 1 fld a deg 1 fld a 0 *
272 xrletr k * deg 1 fld a * if 0 deg 1 fld a deg 1 fld a 0 * k deg 1 fld a deg 1 fld a if 0 deg 1 fld a deg 1 fld a 0 k if 0 deg 1 fld a deg 1 fld a 0
273 269 265 271 272 syl3anc S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 k deg 1 fld a deg 1 fld a if 0 deg 1 fld a deg 1 fld a 0 k if 0 deg 1 fld a deg 1 fld a 0
274 267 273 mpan2d S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 k deg 1 fld a k if 0 deg 1 fld a deg 1 fld a 0
275 261 274 syld S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k 0 k if 0 deg 1 fld a deg 1 fld a 0
276 275 257 jctild S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k 0 k 0 k if 0 deg 1 fld a deg 1 fld a 0
277 258 57 93 deg1cl a Base Poly 1 fld deg 1 fld a 0 −∞
278 152 277 syl S SubRing fld a A deg 1 fld a 0 −∞
279 elun deg 1 fld a 0 −∞ deg 1 fld a 0 deg 1 fld a −∞
280 278 279 sylib S SubRing fld a A deg 1 fld a 0 deg 1 fld a −∞
281 nn0ge0 deg 1 fld a 0 0 deg 1 fld a
282 281 iftrued deg 1 fld a 0 if 0 deg 1 fld a deg 1 fld a 0 = deg 1 fld a
283 id deg 1 fld a 0 deg 1 fld a 0
284 282 283 eqeltrd deg 1 fld a 0 if 0 deg 1 fld a deg 1 fld a 0 0
285 mnflt0 −∞ < 0
286 mnfxr −∞ *
287 xrltnle −∞ * 0 * −∞ < 0 ¬ 0 −∞
288 286 262 287 mp2an −∞ < 0 ¬ 0 −∞
289 285 288 mpbi ¬ 0 −∞
290 elsni deg 1 fld a −∞ deg 1 fld a = −∞
291 290 breq2d deg 1 fld a −∞ 0 deg 1 fld a 0 −∞
292 289 291 mtbiri deg 1 fld a −∞ ¬ 0 deg 1 fld a
293 292 iffalsed deg 1 fld a −∞ if 0 deg 1 fld a deg 1 fld a 0 = 0
294 0nn0 0 0
295 293 294 eqeltrdi deg 1 fld a −∞ if 0 deg 1 fld a deg 1 fld a 0 0
296 284 295 jaoi deg 1 fld a 0 deg 1 fld a −∞ if 0 deg 1 fld a deg 1 fld a 0 0
297 280 296 syl S SubRing fld a A if 0 deg 1 fld a deg 1 fld a 0 0
298 297 ad2antrr S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 if 0 deg 1 fld a deg 1 fld a 0 0
299 fznn0 if 0 deg 1 fld a deg 1 fld a 0 0 k 0 if 0 deg 1 fld a deg 1 fld a 0 k 0 k if 0 deg 1 fld a deg 1 fld a 0
300 298 299 syl S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 k 0 if 0 deg 1 fld a deg 1 fld a 0 k 0 k if 0 deg 1 fld a deg 1 fld a 0
301 276 300 sylibrd S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k 0 k 0 if 0 deg 1 fld a deg 1 fld a 0
302 301 necon1bd S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 ¬ k 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k = 0
303 254 302 mpd S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k = 0
304 303 oveq1d S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k = 0 z k
305 256 245 sylan2 S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 z k
306 305 mul02d S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 0 z k = 0
307 304 306 eqtrd S SubRing fld a A z k 0 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k = 0
308 307 an32s S SubRing fld a A k 0 0 if 0 deg 1 fld a deg 1 fld a 0 z coe 1 a k z k = 0
309 308 mpteq2dva S SubRing fld a A k 0 0 if 0 deg 1 fld a deg 1 fld a 0 z coe 1 a k z k = z 0
310 fconstmpt × 0 = z 0
311 ringmnd fld Ring fld Mnd
312 13 311 ax-mp fld Mnd
313 7 21 pws0g fld Mnd V × 0 = 0 fld 𝑠
314 312 10 313 mp2an × 0 = 0 fld 𝑠
315 310 314 eqtr3i z 0 = 0 fld 𝑠
316 309 315 eqtrdi S SubRing fld a A k 0 0 if 0 deg 1 fld a deg 1 fld a 0 z coe 1 a k z k = 0 fld 𝑠
317 316 166 suppss2 S SubRing fld a A k 0 z coe 1 a k z k supp 0 fld 𝑠 0 if 0 deg 1 fld a deg 1 fld a 0
318 suppssfifsupp k 0 z coe 1 a k z k V Fun k 0 z coe 1 a k z k 0 fld 𝑠 V 0 if 0 deg 1 fld a deg 1 fld a 0 Fin k 0 z coe 1 a k z k supp 0 fld 𝑠 0 if 0 deg 1 fld a deg 1 fld a 0 finSupp 0 fld 𝑠 k 0 z coe 1 a k z k
319 251 252 317 318 syl12anc S SubRing fld a A finSupp 0 fld 𝑠 k 0 z coe 1 a k z k
320 7 8 9 242 166 243 247 319 pwsgsum S SubRing fld a A fld 𝑠 k 0 z coe 1 a k z k = z fld k 0 coe 1 a k z k
321 fz0ssnn0 0 if 0 deg 1 fld a deg 1 fld a 0 0
322 resmpt 0 if 0 deg 1 fld a deg 1 fld a 0 0 k 0 coe 1 a k z k 0 if 0 deg 1 fld a deg 1 fld a 0 = k 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k
323 321 322 ax-mp k 0 coe 1 a k z k 0 if 0 deg 1 fld a deg 1 fld a 0 = k 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k
324 323 oveq2i fld k 0 coe 1 a k z k 0 if 0 deg 1 fld a deg 1 fld a 0 = fld k = 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k
325 13 14 mp1i S SubRing fld a A z fld CMnd
326 165 a1i S SubRing fld a A z 0 V
327 246 fmpttd S SubRing fld a A z k 0 coe 1 a k z k : 0
328 307 326 suppss2 S SubRing fld a A z k 0 coe 1 a k z k supp 0 0 if 0 deg 1 fld a deg 1 fld a 0
329 165 mptex k 0 coe 1 a k z k V
330 funmpt Fun k 0 coe 1 a k z k
331 329 330 210 3pm3.2i k 0 coe 1 a k z k V Fun k 0 coe 1 a k z k 0 V
332 331 a1i S SubRing fld a A z k 0 coe 1 a k z k V Fun k 0 coe 1 a k z k 0 V
333 fzfid S SubRing fld a A z 0 if 0 deg 1 fld a deg 1 fld a 0 Fin
334 suppssfifsupp k 0 coe 1 a k z k V Fun k 0 coe 1 a k z k 0 V 0 if 0 deg 1 fld a deg 1 fld a 0 Fin k 0 coe 1 a k z k supp 0 0 if 0 deg 1 fld a deg 1 fld a 0 finSupp 0 k 0 coe 1 a k z k
335 332 333 328 334 syl12anc S SubRing fld a A z finSupp 0 k 0 coe 1 a k z k
336 8 21 325 326 327 328 335 gsumres S SubRing fld a A z fld k 0 coe 1 a k z k 0 if 0 deg 1 fld a deg 1 fld a 0 = fld k 0 coe 1 a k z k
337 elfznn0 k 0 if 0 deg 1 fld a deg 1 fld a 0 k 0
338 337 246 sylan2 S SubRing fld a A z k 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k
339 333 338 gsumfsum S SubRing fld a A z fld k = 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k = k = 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k
340 324 336 339 3eqtr3a S SubRing fld a A z fld k 0 coe 1 a k z k = k = 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k
341 340 mpteq2dva S SubRing fld a A z fld k 0 coe 1 a k z k = z k = 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k
342 241 320 341 3eqtrd S SubRing fld a A E a = z k = 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k
343 16 adantr S SubRing fld a A S
344 elplyr S if 0 deg 1 fld a deg 1 fld a 0 0 coe 1 a : 0 S z k = 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k Poly S
345 343 297 179 344 syl3anc S SubRing fld a A z k = 0 if 0 deg 1 fld a deg 1 fld a 0 coe 1 a k z k Poly S
346 342 345 eqeltrd S SubRing fld a A E a Poly S
347 eleq1 E a = f E a Poly S f Poly S
348 346 347 syl5ibcom S SubRing fld a A E a = f f Poly S
349 348 rexlimdva S SubRing fld a A E a = f f Poly S
350 151 349 syl5 S SubRing fld f E A f Poly S
351 147 350 impbid S SubRing fld f Poly S f E A
352 351 eqrdv S SubRing fld Poly S = E A