Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|
2 |
|
0re |
|
3 |
|
eqid |
|
4 |
3
|
coef2 |
|
5 |
2 4
|
mpan2 |
|
6 |
5
|
adantr |
|
7 |
|
elfznn0 |
|
8 |
|
ffvelrn |
|
9 |
6 7 8
|
syl2an |
|
10 |
9
|
recnd |
|
11 |
|
simpr |
|
12 |
|
expcl |
|
13 |
11 7 12
|
syl2an |
|
14 |
10 13
|
mulcld |
|
15 |
1 14
|
fsumcj |
|
16 |
10 13
|
cjmuld |
|
17 |
9
|
cjred |
|
18 |
|
cjexp |
|
19 |
11 7 18
|
syl2an |
|
20 |
17 19
|
oveq12d |
|
21 |
16 20
|
eqtrd |
|
22 |
21
|
sumeq2dv |
|
23 |
15 22
|
eqtrd |
|
24 |
|
eqid |
|
25 |
3 24
|
coeid2 |
|
26 |
25
|
fveq2d |
|
27 |
|
cjcl |
|
28 |
3 24
|
coeid2 |
|
29 |
27 28
|
sylan2 |
|
30 |
23 26 29
|
3eqtr4d |
|