| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid |  | 
						
							| 2 |  | 0re |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 | 3 | coef2 |  | 
						
							| 5 | 2 4 | mpan2 |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | elfznn0 |  | 
						
							| 8 |  | ffvelcdm |  | 
						
							| 9 | 6 7 8 | syl2an |  | 
						
							| 10 | 9 | recnd |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 |  | expcl |  | 
						
							| 13 | 11 7 12 | syl2an |  | 
						
							| 14 | 10 13 | mulcld |  | 
						
							| 15 | 1 14 | fsumcj |  | 
						
							| 16 | 10 13 | cjmuld |  | 
						
							| 17 | 9 | cjred |  | 
						
							| 18 |  | cjexp |  | 
						
							| 19 | 11 7 18 | syl2an |  | 
						
							| 20 | 17 19 | oveq12d |  | 
						
							| 21 | 16 20 | eqtrd |  | 
						
							| 22 | 21 | sumeq2dv |  | 
						
							| 23 | 15 22 | eqtrd |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 3 24 | coeid2 |  | 
						
							| 26 | 25 | fveq2d |  | 
						
							| 27 |  | cjcl |  | 
						
							| 28 | 3 24 | coeid2 |  | 
						
							| 29 | 27 28 | sylan2 |  | 
						
							| 30 | 23 26 29 | 3eqtr4d |  |