Step |
Hyp |
Ref |
Expression |
1 |
|
plyrem.1 |
|
2 |
|
plyrem.2 |
|
3 |
|
plyssc |
|
4 |
|
simpl |
|
5 |
3 4
|
sselid |
|
6 |
1
|
plyremlem |
|
7 |
6
|
adantl |
|
8 |
7
|
simp1d |
|
9 |
7
|
simp2d |
|
10 |
|
ax-1ne0 |
|
11 |
10
|
a1i |
|
12 |
9 11
|
eqnetrd |
|
13 |
|
fveq2 |
|
14 |
|
dgr0 |
|
15 |
13 14
|
eqtrdi |
|
16 |
15
|
necon3i |
|
17 |
12 16
|
syl |
|
18 |
2
|
quotdgr |
|
19 |
5 8 17 18
|
syl3anc |
|
20 |
|
0lt1 |
|
21 |
20 9
|
breqtrrid |
|
22 |
|
fveq2 |
|
23 |
22 14
|
eqtrdi |
|
24 |
23
|
breq1d |
|
25 |
21 24
|
syl5ibrcom |
|
26 |
|
pm2.62 |
|
27 |
19 25 26
|
sylc |
|
28 |
27 9
|
breqtrd |
|
29 |
|
quotcl2 |
|
30 |
5 8 17 29
|
syl3anc |
|
31 |
|
plymulcl |
|
32 |
8 30 31
|
syl2anc |
|
33 |
|
plysubcl |
|
34 |
5 32 33
|
syl2anc |
|
35 |
2 34
|
eqeltrid |
|
36 |
|
dgrcl |
|
37 |
35 36
|
syl |
|
38 |
|
nn0lt10b |
|
39 |
37 38
|
syl |
|
40 |
28 39
|
mpbid |
|
41 |
|
0dgrb |
|
42 |
35 41
|
syl |
|
43 |
40 42
|
mpbid |
|
44 |
43
|
fveq1d |
|
45 |
2
|
fveq1i |
|
46 |
|
plyf |
|
47 |
46
|
adantr |
|
48 |
47
|
ffnd |
|
49 |
|
plyf |
|
50 |
8 49
|
syl |
|
51 |
50
|
ffnd |
|
52 |
|
plyf |
|
53 |
30 52
|
syl |
|
54 |
53
|
ffnd |
|
55 |
|
cnex |
|
56 |
55
|
a1i |
|
57 |
|
inidm |
|
58 |
51 54 56 56 57
|
offn |
|
59 |
|
eqidd |
|
60 |
7
|
simp3d |
|
61 |
|
ssun1 |
|
62 |
60 61
|
eqsstrrdi |
|
63 |
|
snssg |
|
64 |
63
|
adantl |
|
65 |
62 64
|
mpbird |
|
66 |
|
ofmulrt |
|
67 |
56 50 53 66
|
syl3anc |
|
68 |
65 67
|
eleqtrrd |
|
69 |
|
fniniseg |
|
70 |
58 69
|
syl |
|
71 |
68 70
|
mpbid |
|
72 |
71
|
simprd |
|
73 |
72
|
adantr |
|
74 |
48 58 56 56 57 59 73
|
ofval |
|
75 |
74
|
anabss3 |
|
76 |
45 75
|
eqtrid |
|
77 |
46
|
ffvelrnda |
|
78 |
77
|
subid1d |
|
79 |
76 78
|
eqtrd |
|
80 |
|
fvex |
|
81 |
80
|
fvconst2 |
|
82 |
81
|
adantl |
|
83 |
44 79 82
|
3eqtr3d |
|
84 |
83
|
sneqd |
|
85 |
84
|
xpeq2d |
|
86 |
43 85
|
eqtr4d |
|