| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyrem.1 |  | 
						
							| 2 |  | plyrem.2 |  | 
						
							| 3 |  | plyssc |  | 
						
							| 4 |  | simpl |  | 
						
							| 5 | 3 4 | sselid |  | 
						
							| 6 | 1 | plyremlem |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 | 7 | simp1d |  | 
						
							| 9 | 7 | simp2d |  | 
						
							| 10 |  | ax-1ne0 |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 | 9 11 | eqnetrd |  | 
						
							| 13 |  | fveq2 |  | 
						
							| 14 |  | dgr0 |  | 
						
							| 15 | 13 14 | eqtrdi |  | 
						
							| 16 | 15 | necon3i |  | 
						
							| 17 | 12 16 | syl |  | 
						
							| 18 | 2 | quotdgr |  | 
						
							| 19 | 5 8 17 18 | syl3anc |  | 
						
							| 20 |  | 0lt1 |  | 
						
							| 21 | 20 9 | breqtrrid |  | 
						
							| 22 |  | fveq2 |  | 
						
							| 23 | 22 14 | eqtrdi |  | 
						
							| 24 | 23 | breq1d |  | 
						
							| 25 | 21 24 | syl5ibrcom |  | 
						
							| 26 |  | pm2.62 |  | 
						
							| 27 | 19 25 26 | sylc |  | 
						
							| 28 | 27 9 | breqtrd |  | 
						
							| 29 |  | quotcl2 |  | 
						
							| 30 | 5 8 17 29 | syl3anc |  | 
						
							| 31 |  | plymulcl |  | 
						
							| 32 | 8 30 31 | syl2anc |  | 
						
							| 33 |  | plysubcl |  | 
						
							| 34 | 5 32 33 | syl2anc |  | 
						
							| 35 | 2 34 | eqeltrid |  | 
						
							| 36 |  | dgrcl |  | 
						
							| 37 | 35 36 | syl |  | 
						
							| 38 |  | nn0lt10b |  | 
						
							| 39 | 37 38 | syl |  | 
						
							| 40 | 28 39 | mpbid |  | 
						
							| 41 |  | 0dgrb |  | 
						
							| 42 | 35 41 | syl |  | 
						
							| 43 | 40 42 | mpbid |  | 
						
							| 44 | 43 | fveq1d |  | 
						
							| 45 | 2 | fveq1i |  | 
						
							| 46 |  | plyf |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 | 47 | ffnd |  | 
						
							| 49 |  | plyf |  | 
						
							| 50 | 8 49 | syl |  | 
						
							| 51 | 50 | ffnd |  | 
						
							| 52 |  | plyf |  | 
						
							| 53 | 30 52 | syl |  | 
						
							| 54 | 53 | ffnd |  | 
						
							| 55 |  | cnex |  | 
						
							| 56 | 55 | a1i |  | 
						
							| 57 |  | inidm |  | 
						
							| 58 | 51 54 56 56 57 | offn |  | 
						
							| 59 |  | eqidd |  | 
						
							| 60 | 7 | simp3d |  | 
						
							| 61 |  | ssun1 |  | 
						
							| 62 | 60 61 | eqsstrrdi |  | 
						
							| 63 |  | snssg |  | 
						
							| 64 | 63 | adantl |  | 
						
							| 65 | 62 64 | mpbird |  | 
						
							| 66 |  | ofmulrt |  | 
						
							| 67 | 56 50 53 66 | syl3anc |  | 
						
							| 68 | 65 67 | eleqtrrd |  | 
						
							| 69 |  | fniniseg |  | 
						
							| 70 | 58 69 | syl |  | 
						
							| 71 | 68 70 | mpbid |  | 
						
							| 72 | 71 | simprd |  | 
						
							| 73 | 72 | adantr |  | 
						
							| 74 | 48 58 56 56 57 59 73 | ofval |  | 
						
							| 75 | 74 | anabss3 |  | 
						
							| 76 | 45 75 | eqtrid |  | 
						
							| 77 | 46 | ffvelcdmda |  | 
						
							| 78 | 77 | subid1d |  | 
						
							| 79 | 76 78 | eqtrd |  | 
						
							| 80 |  | fvex |  | 
						
							| 81 | 80 | fvconst2 |  | 
						
							| 82 | 81 | adantl |  | 
						
							| 83 | 44 79 82 | 3eqtr3d |  | 
						
							| 84 | 83 | sneqd |  | 
						
							| 85 | 84 | xpeq2d |  | 
						
							| 86 | 43 85 | eqtr4d |  |