Metamath Proof Explorer


Theorem plyreres

Description: Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion plyreres F Poly F :

Proof

Step Hyp Ref Expression
1 plybss F Poly
2 plyf F Poly F :
3 ffn F : F Fn
4 fnssresb F Fn F Fn
5 2 3 4 3syl F Poly F Fn
6 1 5 mpbird F Poly F Fn
7 fvres a F a = F a
8 7 adantl F Poly a F a = F a
9 recn a a
10 ffvelrn F : a F a
11 2 9 10 syl2an F Poly a F a
12 plyrecj F Poly a F a = F a
13 9 12 sylan2 F Poly a F a = F a
14 cjre a a = a
15 14 adantl F Poly a a = a
16 15 fveq2d F Poly a F a = F a
17 13 16 eqtrd F Poly a F a = F a
18 11 17 cjrebd F Poly a F a
19 8 18 eqeltrd F Poly a F a
20 19 ralrimiva F Poly a F a
21 fnfvrnss F Fn a F a ran F
22 6 20 21 syl2anc F Poly ran F
23 df-f F : F Fn ran F
24 6 22 23 sylanbrc F Poly F :