Metamath Proof Explorer


Theorem plysub

Description: The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014)

Ref Expression
Hypotheses plyadd.1 φ F Poly S
plyadd.2 φ G Poly S
plyadd.3 φ x S y S x + y S
plymul.4 φ x S y S x y S
plysub.5 φ 1 S
Assertion plysub φ F f G Poly S

Proof

Step Hyp Ref Expression
1 plyadd.1 φ F Poly S
2 plyadd.2 φ G Poly S
3 plyadd.3 φ x S y S x + y S
4 plymul.4 φ x S y S x y S
5 plysub.5 φ 1 S
6 cnex V
7 plyf F Poly S F :
8 1 7 syl φ F :
9 plyf G Poly S G :
10 2 9 syl φ G :
11 ofnegsub V F : G : F + f × 1 × f G = F f G
12 6 8 10 11 mp3an2i φ F + f × 1 × f G = F f G
13 plybss F Poly S S
14 1 13 syl φ S
15 plyconst S 1 S × 1 Poly S
16 14 5 15 syl2anc φ × 1 Poly S
17 16 2 3 4 plymul φ × 1 × f G Poly S
18 1 17 3 plyadd φ F + f × 1 × f G Poly S
19 12 18 eqeltrrd φ F f G Poly S