Metamath Proof Explorer


Theorem plysubcl

Description: The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion plysubcl F Poly S G Poly S F f G Poly

Proof

Step Hyp Ref Expression
1 plyssc Poly S Poly
2 simpl F Poly S G Poly S F Poly S
3 1 2 sselid F Poly S G Poly S F Poly
4 simpr F Poly S G Poly S G Poly S
5 1 4 sselid F Poly S G Poly S G Poly
6 addcl x y x + y
7 6 adantl F Poly S G Poly S x y x + y
8 mulcl x y x y
9 8 adantl F Poly S G Poly S x y x y
10 neg1cn 1
11 10 a1i F Poly S G Poly S 1
12 3 5 7 9 11 plysub F Poly S G Poly S F f G Poly