Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Elementary properties of complex polynomials
plyval
Next ⟩
plybss
Metamath Proof Explorer
Ascii
Unicode
Theorem
plyval
Description:
Value of the polynomial set function.
(Contributed by
Mario Carneiro
, 17-Jul-2014)
Ref
Expression
Assertion
plyval
⊢
S
⊆
ℂ
→
Poly
⁡
S
=
f
|
∃
n
∈
ℕ
0
∃
a
∈
S
∪
0
ℕ
0
f
=
z
∈
ℂ
⟼
∑
k
=
0
n
a
⁡
k
⁢
z
k
Proof
Step
Hyp
Ref
Expression
1
cnex
⊢
ℂ
∈
V
2
1
elpw2
⊢
S
∈
𝒫
ℂ
↔
S
⊆
ℂ
3
uneq1
⊢
x
=
S
→
x
∪
0
=
S
∪
0
4
3
oveq1d
⊢
x
=
S
→
x
∪
0
ℕ
0
=
S
∪
0
ℕ
0
5
4
rexeqdv
⊢
x
=
S
→
∃
a
∈
x
∪
0
ℕ
0
f
=
z
∈
ℂ
⟼
∑
k
=
0
n
a
⁡
k
⁢
z
k
↔
∃
a
∈
S
∪
0
ℕ
0
f
=
z
∈
ℂ
⟼
∑
k
=
0
n
a
⁡
k
⁢
z
k
6
5
rexbidv
⊢
x
=
S
→
∃
n
∈
ℕ
0
∃
a
∈
x
∪
0
ℕ
0
f
=
z
∈
ℂ
⟼
∑
k
=
0
n
a
⁡
k
⁢
z
k
↔
∃
n
∈
ℕ
0
∃
a
∈
S
∪
0
ℕ
0
f
=
z
∈
ℂ
⟼
∑
k
=
0
n
a
⁡
k
⁢
z
k
7
6
abbidv
⊢
x
=
S
→
f
|
∃
n
∈
ℕ
0
∃
a
∈
x
∪
0
ℕ
0
f
=
z
∈
ℂ
⟼
∑
k
=
0
n
a
⁡
k
⁢
z
k
=
f
|
∃
n
∈
ℕ
0
∃
a
∈
S
∪
0
ℕ
0
f
=
z
∈
ℂ
⟼
∑
k
=
0
n
a
⁡
k
⁢
z
k
8
df-ply
⊢
Poly
=
x
∈
𝒫
ℂ
⟼
f
|
∃
n
∈
ℕ
0
∃
a
∈
x
∪
0
ℕ
0
f
=
z
∈
ℂ
⟼
∑
k
=
0
n
a
⁡
k
⁢
z
k
9
nn0ex
⊢
ℕ
0
∈
V
10
ovex
⊢
S
∪
0
ℕ
0
∈
V
11
9
10
ab2rexex
⊢
f
|
∃
n
∈
ℕ
0
∃
a
∈
S
∪
0
ℕ
0
f
=
z
∈
ℂ
⟼
∑
k
=
0
n
a
⁡
k
⁢
z
k
∈
V
12
7
8
11
fvmpt
⊢
S
∈
𝒫
ℂ
→
Poly
⁡
S
=
f
|
∃
n
∈
ℕ
0
∃
a
∈
S
∪
0
ℕ
0
f
=
z
∈
ℂ
⟼
∑
k
=
0
n
a
⁡
k
⁢
z
k
13
2
12
sylbir
⊢
S
⊆
ℂ
→
Poly
⁡
S
=
f
|
∃
n
∈
ℕ
0
∃
a
∈
S
∪
0
ℕ
0
f
=
z
∈
ℂ
⟼
∑
k
=
0
n
a
⁡
k
⁢
z
k