Metamath Proof Explorer


Theorem pm13.14

Description: Theorem *13.14 in WhiteheadRussell p. 178. (Contributed by Andrew Salmon, 3-Jun-2011)

Ref Expression
Assertion pm13.14 [˙A / x]˙ φ ¬ φ x A

Proof

Step Hyp Ref Expression
1 sbceq1a x = A φ [˙A / x]˙ φ
2 1 biimprcd [˙A / x]˙ φ x = A φ
3 2 necon3bd [˙A / x]˙ φ ¬ φ x A
4 3 imp [˙A / x]˙ φ ¬ φ x A