Metamath Proof Explorer


Theorem pm13.192

Description: Theorem *13.192 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011) (Revised by NM, 4-Jan-2017)

Ref Expression
Assertion pm13.192 y x x = A x = y φ [˙A / y]˙ φ

Proof

Step Hyp Ref Expression
1 biimpr x = A x = y x = y x = A
2 1 alimi x x = A x = y x x = y x = A
3 eqeq1 x = y x = A y = A
4 3 equsalvw x x = y x = A y = A
5 2 4 sylib x x = A x = y y = A
6 eqeq2 A = y x = A x = y
7 6 eqcoms y = A x = A x = y
8 7 alrimiv y = A x x = A x = y
9 5 8 impbii x x = A x = y y = A
10 9 anbi1i x x = A x = y φ y = A φ
11 10 exbii y x x = A x = y φ y y = A φ
12 sbc5 [˙A / y]˙ φ y y = A φ
13 11 12 bitr4i y x x = A x = y φ [˙A / y]˙ φ