Metamath Proof Explorer


Theorem pm14.122b

Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.122b A V x φ x = A [˙A / x]˙ φ x φ x = A x φ

Proof

Step Hyp Ref Expression
1 eqeq2 y = A x = y x = A
2 1 imbi2d y = A φ x = y φ x = A
3 2 albidv y = A x φ x = y x φ x = A
4 dfsbcq y = A [˙y / x]˙ φ [˙A / x]˙ φ
5 4 bibi1d y = A [˙y / x]˙ φ x φ [˙A / x]˙ φ x φ
6 3 5 imbi12d y = A x φ x = y [˙y / x]˙ φ x φ x φ x = A [˙A / x]˙ φ x φ
7 sbc5 [˙y / x]˙ φ x x = y φ
8 nfa1 x x φ x = y
9 simpr x = y φ φ
10 ancr φ x = y φ x = y φ
11 10 sps x φ x = y φ x = y φ
12 9 11 impbid2 x φ x = y x = y φ φ
13 8 12 exbid x φ x = y x x = y φ x φ
14 7 13 syl5bb x φ x = y [˙y / x]˙ φ x φ
15 6 14 vtoclg A V x φ x = A [˙A / x]˙ φ x φ
16 15 pm5.32d A V x φ x = A [˙A / x]˙ φ x φ x = A x φ