Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Principia Mathematica * 13 and * 14
pm14.122b
Next ⟩
pm14.122c
Metamath Proof Explorer
Ascii
Unicode
Theorem
pm14.122b
Description:
Theorem *14.122 in
WhiteheadRussell
p. 185.
(Contributed by
Andrew Salmon
, 9-Jun-2011)
Ref
Expression
Assertion
pm14.122b
⊢
A
∈
V
→
∀
x
φ
→
x
=
A
∧
[
˙
A
/
x
]
˙
φ
↔
∀
x
φ
→
x
=
A
∧
∃
x
φ
Proof
Step
Hyp
Ref
Expression
1
eqeq2
⊢
y
=
A
→
x
=
y
↔
x
=
A
2
1
imbi2d
⊢
y
=
A
→
φ
→
x
=
y
↔
φ
→
x
=
A
3
2
albidv
⊢
y
=
A
→
∀
x
φ
→
x
=
y
↔
∀
x
φ
→
x
=
A
4
dfsbcq
⊢
y
=
A
→
[
˙
y
/
x
]
˙
φ
↔
[
˙
A
/
x
]
˙
φ
5
4
bibi1d
⊢
y
=
A
→
[
˙
y
/
x
]
˙
φ
↔
∃
x
φ
↔
[
˙
A
/
x
]
˙
φ
↔
∃
x
φ
6
3
5
imbi12d
⊢
y
=
A
→
∀
x
φ
→
x
=
y
→
[
˙
y
/
x
]
˙
φ
↔
∃
x
φ
↔
∀
x
φ
→
x
=
A
→
[
˙
A
/
x
]
˙
φ
↔
∃
x
φ
7
sbc5
⊢
[
˙
y
/
x
]
˙
φ
↔
∃
x
x
=
y
∧
φ
8
nfa1
⊢
Ⅎ
x
∀
x
φ
→
x
=
y
9
simpr
⊢
x
=
y
∧
φ
→
φ
10
ancr
⊢
φ
→
x
=
y
→
φ
→
x
=
y
∧
φ
11
10
sps
⊢
∀
x
φ
→
x
=
y
→
φ
→
x
=
y
∧
φ
12
9
11
impbid2
⊢
∀
x
φ
→
x
=
y
→
x
=
y
∧
φ
↔
φ
13
8
12
exbid
⊢
∀
x
φ
→
x
=
y
→
∃
x
x
=
y
∧
φ
↔
∃
x
φ
14
7
13
syl5bb
⊢
∀
x
φ
→
x
=
y
→
[
˙
y
/
x
]
˙
φ
↔
∃
x
φ
15
6
14
vtoclg
⊢
A
∈
V
→
∀
x
φ
→
x
=
A
→
[
˙
A
/
x
]
˙
φ
↔
∃
x
φ
16
15
pm5.32d
⊢
A
∈
V
→
∀
x
φ
→
x
=
A
∧
[
˙
A
/
x
]
˙
φ
↔
∀
x
φ
→
x
=
A
∧
∃
x
φ