Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Principia Mathematica * 13 and * 14
pm14.122c
Next ⟩
pm14.123a
Metamath Proof Explorer
Ascii
Unicode
Theorem
pm14.122c
Description:
Theorem *14.122 in
WhiteheadRussell
p. 185.
(Contributed by
Andrew Salmon
, 9-Jun-2011)
Ref
Expression
Assertion
pm14.122c
⊢
A
∈
V
→
∀
x
φ
↔
x
=
A
↔
∀
x
φ
→
x
=
A
∧
∃
x
φ
Proof
Step
Hyp
Ref
Expression
1
pm14.122a
⊢
A
∈
V
→
∀
x
φ
↔
x
=
A
↔
∀
x
φ
→
x
=
A
∧
[
˙
A
/
x
]
˙
φ
2
pm14.122b
⊢
A
∈
V
→
∀
x
φ
→
x
=
A
∧
[
˙
A
/
x
]
˙
φ
↔
∀
x
φ
→
x
=
A
∧
∃
x
φ
3
1
2
bitrd
⊢
A
∈
V
→
∀
x
φ
↔
x
=
A
↔
∀
x
φ
→
x
=
A
∧
∃
x
φ