Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Principia Mathematica * 13 and * 14
pm14.123a
Next ⟩
pm14.123b
Metamath Proof Explorer
Ascii
Unicode
Theorem
pm14.123a
Description:
Theorem *14.123 in
WhiteheadRussell
p. 185.
(Contributed by
Andrew Salmon
, 9-Jun-2011)
Ref
Expression
Assertion
pm14.123a
⊢
A
∈
V
∧
B
∈
W
→
∀
z
∀
w
φ
↔
z
=
A
∧
w
=
B
↔
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
∧
[
˙
A
/
z
]
˙
[
˙
B
/
w
]
˙
φ
Proof
Step
Hyp
Ref
Expression
1
2albiim
⊢
∀
z
∀
w
φ
↔
z
=
A
∧
w
=
B
↔
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
∧
∀
z
∀
w
z
=
A
∧
w
=
B
→
φ
2
2sbc6g
⊢
A
∈
V
∧
B
∈
W
→
∀
z
∀
w
z
=
A
∧
w
=
B
→
φ
↔
[
˙
A
/
z
]
˙
[
˙
B
/
w
]
˙
φ
3
2
anbi2d
⊢
A
∈
V
∧
B
∈
W
→
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
∧
∀
z
∀
w
z
=
A
∧
w
=
B
→
φ
↔
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
∧
[
˙
A
/
z
]
˙
[
˙
B
/
w
]
˙
φ
4
1
3
syl5bb
⊢
A
∈
V
∧
B
∈
W
→
∀
z
∀
w
φ
↔
z
=
A
∧
w
=
B
↔
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
∧
[
˙
A
/
z
]
˙
[
˙
B
/
w
]
˙
φ