Metamath Proof Explorer


Theorem pm14.123a

Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.123a A V B W z w φ z = A w = B z w φ z = A w = B [˙A / z]˙ [˙B / w]˙ φ

Proof

Step Hyp Ref Expression
1 2albiim z w φ z = A w = B z w φ z = A w = B z w z = A w = B φ
2 2sbc6g A V B W z w z = A w = B φ [˙A / z]˙ [˙B / w]˙ φ
3 2 anbi2d A V B W z w φ z = A w = B z w z = A w = B φ z w φ z = A w = B [˙A / z]˙ [˙B / w]˙ φ
4 1 3 syl5bb A V B W z w φ z = A w = B z w φ z = A w = B [˙A / z]˙ [˙B / w]˙ φ