Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Principia Mathematica * 13 and * 14
pm14.123b
Next ⟩
pm14.123c
Metamath Proof Explorer
Ascii
Unicode
Theorem
pm14.123b
Description:
Theorem *14.123 in
WhiteheadRussell
p. 185.
(Contributed by
Andrew Salmon
, 9-Jun-2011)
Ref
Expression
Assertion
pm14.123b
⊢
A
∈
V
∧
B
∈
W
→
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
∧
[
˙
A
/
z
]
˙
[
˙
B
/
w
]
˙
φ
↔
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
∧
∃
z
∃
w
φ
Proof
Step
Hyp
Ref
Expression
1
2sbc5g
⊢
A
∈
V
∧
B
∈
W
→
∃
z
∃
w
z
=
A
∧
w
=
B
∧
φ
↔
[
˙
A
/
z
]
˙
[
˙
B
/
w
]
˙
φ
2
1
adantr
⊢
A
∈
V
∧
B
∈
W
∧
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
→
∃
z
∃
w
z
=
A
∧
w
=
B
∧
φ
↔
[
˙
A
/
z
]
˙
[
˙
B
/
w
]
˙
φ
3
nfa1
⊢
Ⅎ
z
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
4
nfa2
⊢
Ⅎ
w
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
5
simpr
⊢
z
=
A
∧
w
=
B
∧
φ
→
φ
6
2sp
⊢
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
→
φ
→
z
=
A
∧
w
=
B
7
6
ancrd
⊢
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
→
φ
→
z
=
A
∧
w
=
B
∧
φ
8
5
7
impbid2
⊢
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
→
z
=
A
∧
w
=
B
∧
φ
↔
φ
9
4
8
exbid
⊢
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
→
∃
w
z
=
A
∧
w
=
B
∧
φ
↔
∃
w
φ
10
3
9
exbid
⊢
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
→
∃
z
∃
w
z
=
A
∧
w
=
B
∧
φ
↔
∃
z
∃
w
φ
11
10
adantl
⊢
A
∈
V
∧
B
∈
W
∧
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
→
∃
z
∃
w
z
=
A
∧
w
=
B
∧
φ
↔
∃
z
∃
w
φ
12
2
11
bitr3d
⊢
A
∈
V
∧
B
∈
W
∧
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
→
[
˙
A
/
z
]
˙
[
˙
B
/
w
]
˙
φ
↔
∃
z
∃
w
φ
13
12
pm5.32da
⊢
A
∈
V
∧
B
∈
W
→
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
∧
[
˙
A
/
z
]
˙
[
˙
B
/
w
]
˙
φ
↔
∀
z
∀
w
φ
→
z
=
A
∧
w
=
B
∧
∃
z
∃
w
φ