Metamath Proof Explorer


Theorem pm14.123b

Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.123b A V B W z w φ z = A w = B [˙A / z]˙ [˙B / w]˙ φ z w φ z = A w = B z w φ

Proof

Step Hyp Ref Expression
1 2sbc5g A V B W z w z = A w = B φ [˙A / z]˙ [˙B / w]˙ φ
2 1 adantr A V B W z w φ z = A w = B z w z = A w = B φ [˙A / z]˙ [˙B / w]˙ φ
3 nfa1 z z w φ z = A w = B
4 nfa2 w z w φ z = A w = B
5 simpr z = A w = B φ φ
6 2sp z w φ z = A w = B φ z = A w = B
7 6 ancrd z w φ z = A w = B φ z = A w = B φ
8 5 7 impbid2 z w φ z = A w = B z = A w = B φ φ
9 4 8 exbid z w φ z = A w = B w z = A w = B φ w φ
10 3 9 exbid z w φ z = A w = B z w z = A w = B φ z w φ
11 10 adantl A V B W z w φ z = A w = B z w z = A w = B φ z w φ
12 2 11 bitr3d A V B W z w φ z = A w = B [˙A / z]˙ [˙B / w]˙ φ z w φ
13 12 pm5.32da A V B W z w φ z = A w = B [˙A / z]˙ [˙B / w]˙ φ z w φ z = A w = B z w φ