Metamath Proof Explorer


Theorem pm14.123c

Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.123c A V B W z w φ z = A w = B z w φ z = A w = B z w φ

Proof

Step Hyp Ref Expression
1 pm14.123a A V B W z w φ z = A w = B z w φ z = A w = B [˙A / z]˙ [˙B / w]˙ φ
2 pm14.123b A V B W z w φ z = A w = B [˙A / z]˙ [˙B / w]˙ φ z w φ z = A w = B z w φ
3 1 2 bitrd A V B W z w φ z = A w = B z w φ z = A w = B z w φ