Metamath Proof Explorer


Theorem pm2.21ddne

Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses pm2.21ddne.1 φ A = B
pm2.21ddne.2 φ A B
Assertion pm2.21ddne φ ψ

Proof

Step Hyp Ref Expression
1 pm2.21ddne.1 φ A = B
2 pm2.21ddne.2 φ A B
3 2 neneqd φ ¬ A = B
4 1 3 pm2.21dd φ ψ