Metamath Proof Explorer


Theorem pm2.61d

Description: Deduction eliminating an antecedent. (Contributed by NM, 27-Apr-1994) (Proof shortened by Wolf Lammen, 12-Sep-2013)

Ref Expression
Hypotheses pm2.61d.1 φ ψ χ
pm2.61d.2 φ ¬ ψ χ
Assertion pm2.61d φ χ

Proof

Step Hyp Ref Expression
1 pm2.61d.1 φ ψ χ
2 pm2.61d.2 φ ¬ ψ χ
3 2 con1d φ ¬ χ ψ
4 3 1 syld φ ¬ χ χ
5 4 pm2.18d φ χ