Metamath Proof Explorer


Theorem pm2.61da3ne

Description: Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013) (Proof shortened by Wolf Lammen, 25-Nov-2019)

Ref Expression
Hypotheses pm2.61da3ne.1 φ A = B ψ
pm2.61da3ne.2 φ C = D ψ
pm2.61da3ne.3 φ E = F ψ
pm2.61da3ne.4 φ A B C D E F ψ
Assertion pm2.61da3ne φ ψ

Proof

Step Hyp Ref Expression
1 pm2.61da3ne.1 φ A = B ψ
2 pm2.61da3ne.2 φ C = D ψ
3 pm2.61da3ne.3 φ E = F ψ
4 pm2.61da3ne.4 φ A B C D E F ψ
5 1 a1d φ A = B C D E F ψ
6 4 3exp2 φ A B C D E F ψ
7 6 imp4b φ A B C D E F ψ
8 5 7 pm2.61dane φ C D E F ψ
9 8 imp φ C D E F ψ
10 2 3 9 pm2.61da2ne φ ψ