Metamath Proof Explorer


Theorem pm2.61danel

Description: Deduction eliminating an elementhood in an antecedent. (Contributed by AV, 5-Dec-2021)

Ref Expression
Hypotheses pm2.61danel.1 φ A B ψ
pm2.61danel.2 φ A B ψ
Assertion pm2.61danel φ ψ

Proof

Step Hyp Ref Expression
1 pm2.61danel.1 φ A B ψ
2 pm2.61danel.2 φ A B ψ
3 df-nel A B ¬ A B
4 3 2 sylan2br φ ¬ A B ψ
5 1 4 pm2.61dan φ ψ