Metamath Proof Explorer


Theorem pm2.61dda

Description: Elimination of two antecedents. (Contributed by NM, 9-Jul-2013)

Ref Expression
Hypotheses pm2.61dda.1 φ ¬ ψ θ
pm2.61dda.2 φ ¬ χ θ
pm2.61dda.3 φ ψ χ θ
Assertion pm2.61dda φ θ

Proof

Step Hyp Ref Expression
1 pm2.61dda.1 φ ¬ ψ θ
2 pm2.61dda.2 φ ¬ χ θ
3 pm2.61dda.3 φ ψ χ θ
4 3 anassrs φ ψ χ θ
5 2 adantlr φ ψ ¬ χ θ
6 4 5 pm2.61dan φ ψ θ
7 6 1 pm2.61dan φ θ