Metamath Proof Explorer


Theorem pm2.61ian

Description: Elimination of an antecedent. (Contributed by NM, 1-Jan-2005)

Ref Expression
Hypotheses pm2.61ian.1 φ ψ χ
pm2.61ian.2 ¬ φ ψ χ
Assertion pm2.61ian ψ χ

Proof

Step Hyp Ref Expression
1 pm2.61ian.1 φ ψ χ
2 pm2.61ian.2 ¬ φ ψ χ
3 1 ex φ ψ χ
4 2 ex ¬ φ ψ χ
5 3 4 pm2.61i ψ χ