Metamath Proof Explorer


Theorem pm2.61iine

Description: Equality version of pm2.61ii . (Contributed by Scott Fenton, 13-Jun-2013) (Proof shortened by Wolf Lammen, 25-Nov-2019)

Ref Expression
Hypotheses pm2.61iine.1 A C B D φ
pm2.61iine.2 A = C φ
pm2.61iine.3 B = D φ
Assertion pm2.61iine φ

Proof

Step Hyp Ref Expression
1 pm2.61iine.1 A C B D φ
2 pm2.61iine.2 A = C φ
3 pm2.61iine.3 B = D φ
4 3 adantl A C B = D φ
5 4 1 pm2.61dane A C φ
6 2 5 pm2.61ine φ