Metamath Proof Explorer


Theorem pm2.65

Description: Theorem *2.65 of WhiteheadRussell p. 107. Proof by contradiction. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 8-Mar-2013)

Ref Expression
Assertion pm2.65 φ ψ φ ¬ ψ ¬ φ

Proof

Step Hyp Ref Expression
1 idd φ ψ ¬ φ ¬ φ
2 con3 φ ψ ¬ ψ ¬ φ
3 1 2 jad φ ψ φ ¬ ψ ¬ φ