Metamath Proof Explorer


Theorem pm2.65da

Description: Deduction for proof by contradiction. (Contributed by NM, 12-Jun-2014)

Ref Expression
Hypotheses pm2.65da.1 φ ψ χ
pm2.65da.2 φ ψ ¬ χ
Assertion pm2.65da φ ¬ ψ

Proof

Step Hyp Ref Expression
1 pm2.65da.1 φ ψ χ
2 pm2.65da.2 φ ψ ¬ χ
3 1 ex φ ψ χ
4 2 ex φ ψ ¬ χ
5 3 4 pm2.65d φ ¬ ψ