Metamath Proof Explorer


Theorem pm2.74

Description: Theorem *2.74 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Assertion pm2.74 ψ φ φ ψ χ φ χ

Proof

Step Hyp Ref Expression
1 orel2 ¬ ψ φ ψ φ
2 ax-1 φ φ ψ φ
3 1 2 ja ψ φ φ ψ φ
4 3 orim1d ψ φ φ ψ χ φ χ