Metamath Proof Explorer


Theorem pm2.75

Description: Theorem *2.75 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 4-Jan-2013)

Ref Expression
Assertion pm2.75 φ ψ φ ψ χ φ χ

Proof

Step Hyp Ref Expression
1 pm2.76 φ ψ χ φ ψ φ χ
2 1 com12 φ ψ φ ψ χ φ χ