| Step |
Hyp |
Ref |
Expression |
| 1 |
|
monmat2matmon.p |
|
| 2 |
|
monmat2matmon.c |
|
| 3 |
|
monmat2matmon.b |
|
| 4 |
|
monmat2matmon.m1 |
|
| 5 |
|
monmat2matmon.e1 |
|
| 6 |
|
monmat2matmon.x |
|
| 7 |
|
monmat2matmon.a |
|
| 8 |
|
monmat2matmon.k |
|
| 9 |
|
monmat2matmon.q |
|
| 10 |
|
monmat2matmon.i |
|
| 11 |
|
monmat2matmon.e2 |
|
| 12 |
|
monmat2matmon.y |
|
| 13 |
|
monmat2matmon.m2 |
|
| 14 |
|
monmat2matmon.t |
|
| 15 |
|
eqid |
|
| 16 |
|
crngring |
|
| 17 |
16
|
anim2i |
|
| 18 |
1 2
|
pmatring |
|
| 19 |
|
ringcmn |
|
| 20 |
17 18 19
|
3syl |
|
| 21 |
20
|
adantr |
|
| 22 |
7
|
matring |
|
| 23 |
16 22
|
sylan2 |
|
| 24 |
9
|
ply1ring |
|
| 25 |
|
ringmnd |
|
| 26 |
23 24 25
|
3syl |
|
| 27 |
26
|
adantr |
|
| 28 |
|
nn0ex |
|
| 29 |
28
|
a1i |
|
| 30 |
|
eqid |
|
| 31 |
1 2 3 4 5 6 7 9 30 10
|
pm2mpghm |
|
| 32 |
16 31
|
sylan2 |
|
| 33 |
32
|
adantr |
|
| 34 |
|
ghmmhm |
|
| 35 |
33 34
|
syl |
|
| 36 |
17
|
adantr |
|
| 37 |
36
|
adantr |
|
| 38 |
|
elmapi |
|
| 39 |
38
|
adantr |
|
| 40 |
39
|
adantl |
|
| 41 |
40
|
ffvelcdmda |
|
| 42 |
|
simpr |
|
| 43 |
7 8 14 1 2 3 13 11 12
|
mat2pmatscmxcl |
|
| 44 |
37 41 42 43
|
syl12anc |
|
| 45 |
|
fvexd |
|
| 46 |
|
ovexd |
|
| 47 |
|
simpr |
|
| 48 |
|
fvex |
|
| 49 |
|
fsuppmapnn0ub |
|
| 50 |
47 48 49
|
sylancl |
|
| 51 |
|
csbov12g |
|
| 52 |
|
csbov1g |
|
| 53 |
|
csbvarg |
|
| 54 |
53
|
oveq1d |
|
| 55 |
52 54
|
eqtrd |
|
| 56 |
|
csbfv2g |
|
| 57 |
|
csbfv2g |
|
| 58 |
53
|
fveq2d |
|
| 59 |
57 58
|
eqtrd |
|
| 60 |
59
|
fveq2d |
|
| 61 |
56 60
|
eqtrd |
|
| 62 |
55 61
|
oveq12d |
|
| 63 |
51 62
|
eqtrd |
|
| 64 |
63
|
adantl |
|
| 65 |
64
|
adantr |
|
| 66 |
|
fveq2 |
|
| 67 |
66
|
oveq2d |
|
| 68 |
14 7 8 1 2 3
|
mat2pmatghm |
|
| 69 |
16 68
|
sylan2 |
|
| 70 |
69
|
ad3antrrr |
|
| 71 |
|
ghmmhm |
|
| 72 |
|
eqid |
|
| 73 |
72 15
|
mhm0 |
|
| 74 |
70 71 73
|
3syl |
|
| 75 |
74
|
oveq2d |
|
| 76 |
1
|
ply1ring |
|
| 77 |
16 76
|
syl |
|
| 78 |
2
|
matlmod |
|
| 79 |
77 78
|
sylan2 |
|
| 80 |
79
|
ad3antrrr |
|
| 81 |
|
eqid |
|
| 82 |
|
eqid |
|
| 83 |
81 82
|
mgpbas |
|
| 84 |
77
|
adantl |
|
| 85 |
81
|
ringmgp |
|
| 86 |
84 85
|
syl |
|
| 87 |
86
|
ad3antrrr |
|
| 88 |
|
simpr |
|
| 89 |
16
|
adantl |
|
| 90 |
12 1 82
|
vr1cl |
|
| 91 |
89 90
|
syl |
|
| 92 |
91
|
ad3antrrr |
|
| 93 |
83 11 87 88 92
|
mulgnn0cld |
|
| 94 |
1
|
ply1crng |
|
| 95 |
2
|
matsca2 |
|
| 96 |
94 95
|
sylan2 |
|
| 97 |
96
|
eqcomd |
|
| 98 |
97
|
ad3antrrr |
|
| 99 |
98
|
fveq2d |
|
| 100 |
93 99
|
eleqtrrd |
|
| 101 |
|
eqid |
|
| 102 |
|
eqid |
|
| 103 |
101 13 102 15
|
lmodvs0 |
|
| 104 |
80 100 103
|
syl2anc |
|
| 105 |
75 104
|
eqtrd |
|
| 106 |
67 105
|
sylan9eqr |
|
| 107 |
65 106
|
eqtrd |
|
| 108 |
107
|
ex |
|
| 109 |
108
|
imim2d |
|
| 110 |
109
|
ralimdva |
|
| 111 |
110
|
reximdva |
|
| 112 |
50 111
|
syld |
|
| 113 |
112
|
impr |
|
| 114 |
45 46 113
|
mptnn0fsupp |
|
| 115 |
3 15 21 27 29 35 44 114
|
gsummptmhm |
|
| 116 |
|
simpll |
|
| 117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
monmat2matmon |
|
| 118 |
116 41 42 117
|
syl12anc |
|
| 119 |
118
|
mpteq2dva |
|
| 120 |
119
|
oveq2d |
|
| 121 |
115 120
|
eqtr3d |
|