Metamath Proof Explorer


Theorem pm2mpcl

Description: The transformation of polynomial matrices into polynomials over matrices maps polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P = Poly 1 R
pm2mpval.c C = N Mat P
pm2mpval.b B = Base C
pm2mpval.m ˙ = Q
pm2mpval.e × ˙ = mulGrp Q
pm2mpval.x X = var 1 A
pm2mpval.a A = N Mat R
pm2mpval.q Q = Poly 1 A
pm2mpval.t T = N pMatToMatPoly R
pm2mpcl.l L = Base Q
Assertion pm2mpcl N Fin R Ring M B T M L

Proof

Step Hyp Ref Expression
1 pm2mpval.p P = Poly 1 R
2 pm2mpval.c C = N Mat P
3 pm2mpval.b B = Base C
4 pm2mpval.m ˙ = Q
5 pm2mpval.e × ˙ = mulGrp Q
6 pm2mpval.x X = var 1 A
7 pm2mpval.a A = N Mat R
8 pm2mpval.q Q = Poly 1 A
9 pm2mpval.t T = N pMatToMatPoly R
10 pm2mpcl.l L = Base Q
11 1 2 3 4 5 6 7 8 9 pm2mpfval N Fin R Ring M B T M = Q k 0 M decompPMat k ˙ k × ˙ X
12 eqid 0 Q = 0 Q
13 7 matring N Fin R Ring A Ring
14 8 ply1ring A Ring Q Ring
15 ringcmn Q Ring Q CMnd
16 13 14 15 3syl N Fin R Ring Q CMnd
17 16 3adant3 N Fin R Ring M B Q CMnd
18 nn0ex 0 V
19 18 a1i N Fin R Ring M B 0 V
20 13 3adant3 N Fin R Ring M B A Ring
21 20 adantr N Fin R Ring M B k 0 A Ring
22 simpl2 N Fin R Ring M B k 0 R Ring
23 simpl3 N Fin R Ring M B k 0 M B
24 simpr N Fin R Ring M B k 0 k 0
25 eqid Base A = Base A
26 1 2 3 7 25 decpmatcl R Ring M B k 0 M decompPMat k Base A
27 22 23 24 26 syl3anc N Fin R Ring M B k 0 M decompPMat k Base A
28 eqid mulGrp Q = mulGrp Q
29 25 8 6 4 28 5 10 ply1tmcl A Ring M decompPMat k Base A k 0 M decompPMat k ˙ k × ˙ X L
30 21 27 24 29 syl3anc N Fin R Ring M B k 0 M decompPMat k ˙ k × ˙ X L
31 30 fmpttd N Fin R Ring M B k 0 M decompPMat k ˙ k × ˙ X : 0 L
32 8 ply1lmod A Ring Q LMod
33 20 32 syl N Fin R Ring M B Q LMod
34 eqidd N Fin R Ring M B Scalar Q = Scalar Q
35 8 6 28 5 10 ply1moncl A Ring k 0 k × ˙ X L
36 20 35 sylan N Fin R Ring M B k 0 k × ˙ X L
37 eqid 0 Scalar Q = 0 Scalar Q
38 eqid 0 A = 0 A
39 1 2 3 7 38 decpmatfsupp R Ring M B finSupp 0 A k 0 M decompPMat k
40 39 3adant1 N Fin R Ring M B finSupp 0 A k 0 M decompPMat k
41 8 ply1sca A Ring A = Scalar Q
42 41 eqcomd A Ring Scalar Q = A
43 20 42 syl N Fin R Ring M B Scalar Q = A
44 43 fveq2d N Fin R Ring M B 0 Scalar Q = 0 A
45 40 44 breqtrrd N Fin R Ring M B finSupp 0 Scalar Q k 0 M decompPMat k
46 19 33 34 10 27 36 12 37 4 45 mptscmfsupp0 N Fin R Ring M B finSupp 0 Q k 0 M decompPMat k ˙ k × ˙ X
47 10 12 17 19 31 46 gsumcl N Fin R Ring M B Q k 0 M decompPMat k ˙ k × ˙ X L
48 11 47 eqeltrd N Fin R Ring M B T M L