Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpval.p |
|
2 |
|
pm2mpval.c |
|
3 |
|
pm2mpval.b |
|
4 |
|
pm2mpval.m |
|
5 |
|
pm2mpval.e |
|
6 |
|
pm2mpval.x |
|
7 |
|
pm2mpval.a |
|
8 |
|
pm2mpval.q |
|
9 |
|
pm2mpval.t |
|
10 |
|
simpll |
|
11 |
|
simplr |
|
12 |
|
simprl |
|
13 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
|
14 |
10 11 12 13
|
syl3anc |
|
15 |
14
|
fveq2d |
|
16 |
15
|
fveq1d |
|
17 |
|
eqid |
|
18 |
7
|
matring |
|
19 |
18
|
adantr |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
11
|
adantr |
|
23 |
12
|
adantr |
|
24 |
|
simpr |
|
25 |
1 2 3 7 20
|
decpmatcl |
|
26 |
22 23 24 25
|
syl3anc |
|
27 |
26
|
ralrimiva |
|
28 |
1 2 3 7 21
|
decpmatfsupp |
|
29 |
28
|
ad2ant2lr |
|
30 |
|
simpr |
|
31 |
30
|
adantl |
|
32 |
8 17 6 5 19 20 4 21 27 29 31
|
gsummoncoe1 |
|
33 |
|
csbov2g |
|
34 |
|
csbvarg |
|
35 |
34
|
oveq2d |
|
36 |
33 35
|
eqtrd |
|
37 |
36
|
adantl |
|
38 |
37
|
adantl |
|
39 |
16 32 38
|
3eqtrd |
|