Metamath Proof Explorer


Theorem pm2mpcoe1

Description: A coefficient of the polynomial over matrices which is the result of the transformation of a polynomial matrix is the matrix consisting of the coefficients in the polynomial entries of the polynomial matrix. (Contributed by AV, 20-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P = Poly 1 R
pm2mpval.c C = N Mat P
pm2mpval.b B = Base C
pm2mpval.m ˙ = Q
pm2mpval.e × ˙ = mulGrp Q
pm2mpval.x X = var 1 A
pm2mpval.a A = N Mat R
pm2mpval.q Q = Poly 1 A
pm2mpval.t T = N pMatToMatPoly R
Assertion pm2mpcoe1 N Fin R Ring M B K 0 coe 1 T M K = M decompPMat K

Proof

Step Hyp Ref Expression
1 pm2mpval.p P = Poly 1 R
2 pm2mpval.c C = N Mat P
3 pm2mpval.b B = Base C
4 pm2mpval.m ˙ = Q
5 pm2mpval.e × ˙ = mulGrp Q
6 pm2mpval.x X = var 1 A
7 pm2mpval.a A = N Mat R
8 pm2mpval.q Q = Poly 1 A
9 pm2mpval.t T = N pMatToMatPoly R
10 simpll N Fin R Ring M B K 0 N Fin
11 simplr N Fin R Ring M B K 0 R Ring
12 simprl N Fin R Ring M B K 0 M B
13 1 2 3 4 5 6 7 8 9 pm2mpfval N Fin R Ring M B T M = Q k 0 M decompPMat k ˙ k × ˙ X
14 10 11 12 13 syl3anc N Fin R Ring M B K 0 T M = Q k 0 M decompPMat k ˙ k × ˙ X
15 14 fveq2d N Fin R Ring M B K 0 coe 1 T M = coe 1 Q k 0 M decompPMat k ˙ k × ˙ X
16 15 fveq1d N Fin R Ring M B K 0 coe 1 T M K = coe 1 Q k 0 M decompPMat k ˙ k × ˙ X K
17 eqid Base Q = Base Q
18 7 matring N Fin R Ring A Ring
19 18 adantr N Fin R Ring M B K 0 A Ring
20 eqid Base A = Base A
21 eqid 0 A = 0 A
22 11 adantr N Fin R Ring M B K 0 k 0 R Ring
23 12 adantr N Fin R Ring M B K 0 k 0 M B
24 simpr N Fin R Ring M B K 0 k 0 k 0
25 1 2 3 7 20 decpmatcl R Ring M B k 0 M decompPMat k Base A
26 22 23 24 25 syl3anc N Fin R Ring M B K 0 k 0 M decompPMat k Base A
27 26 ralrimiva N Fin R Ring M B K 0 k 0 M decompPMat k Base A
28 1 2 3 7 21 decpmatfsupp R Ring M B finSupp 0 A k 0 M decompPMat k
29 28 ad2ant2lr N Fin R Ring M B K 0 finSupp 0 A k 0 M decompPMat k
30 simpr M B K 0 K 0
31 30 adantl N Fin R Ring M B K 0 K 0
32 8 17 6 5 19 20 4 21 27 29 31 gsummoncoe1 N Fin R Ring M B K 0 coe 1 Q k 0 M decompPMat k ˙ k × ˙ X K = K / k M decompPMat k
33 csbov2g K 0 K / k M decompPMat k = M decompPMat K / k k
34 csbvarg K 0 K / k k = K
35 34 oveq2d K 0 M decompPMat K / k k = M decompPMat K
36 33 35 eqtrd K 0 K / k M decompPMat k = M decompPMat K
37 36 adantl M B K 0 K / k M decompPMat k = M decompPMat K
38 37 adantl N Fin R Ring M B K 0 K / k M decompPMat k = M decompPMat K
39 16 32 38 3eqtrd N Fin R Ring M B K 0 coe 1 T M K = M decompPMat K