Metamath Proof Explorer


Theorem pm2mpf

Description: The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P = Poly 1 R
pm2mpval.c C = N Mat P
pm2mpval.b B = Base C
pm2mpval.m ˙ = Q
pm2mpval.e × ˙ = mulGrp Q
pm2mpval.x X = var 1 A
pm2mpval.a A = N Mat R
pm2mpval.q Q = Poly 1 A
pm2mpval.t T = N pMatToMatPoly R
pm2mpcl.l L = Base Q
Assertion pm2mpf N Fin R Ring T : B L

Proof

Step Hyp Ref Expression
1 pm2mpval.p P = Poly 1 R
2 pm2mpval.c C = N Mat P
3 pm2mpval.b B = Base C
4 pm2mpval.m ˙ = Q
5 pm2mpval.e × ˙ = mulGrp Q
6 pm2mpval.x X = var 1 A
7 pm2mpval.a A = N Mat R
8 pm2mpval.q Q = Poly 1 A
9 pm2mpval.t T = N pMatToMatPoly R
10 pm2mpcl.l L = Base Q
11 ovexd N Fin R Ring m B Q k 0 m decompPMat k ˙ k × ˙ X V
12 1 2 3 4 5 6 7 8 9 pm2mpval N Fin R Ring T = m B Q k 0 m decompPMat k ˙ k × ˙ X
13 1 2 3 4 5 6 7 8 9 10 pm2mpcl N Fin R Ring b B T b L
14 13 3expa N Fin R Ring b B T b L
15 11 12 14 fmpt2d N Fin R Ring T : B L