Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpval.p |
|
2 |
|
pm2mpval.c |
|
3 |
|
pm2mpval.b |
|
4 |
|
pm2mpval.m |
|
5 |
|
pm2mpval.e |
|
6 |
|
pm2mpval.x |
|
7 |
|
pm2mpval.a |
|
8 |
|
pm2mpval.q |
|
9 |
|
pm2mpval.t |
|
10 |
|
pm2mpcl.l |
|
11 |
1 2 3 4 5 6 7 8 9 10
|
pm2mpf |
|
12 |
7
|
matring |
|
13 |
12
|
adantr |
|
14 |
1 2 3 4 5 6 7 8 9 10
|
pm2mpcl |
|
15 |
14
|
3expa |
|
16 |
15
|
adantrr |
|
17 |
1 2 3 4 5 6 7 8 9 10
|
pm2mpcl |
|
18 |
17
|
3expia |
|
19 |
18
|
adantld |
|
20 |
19
|
imp |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
8 10 21 22
|
ply1coe1eq |
|
24 |
23
|
bicomd |
|
25 |
13 16 20 24
|
syl3anc |
|
26 |
|
simpll |
|
27 |
|
simplr |
|
28 |
|
simprl |
|
29 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
|
30 |
26 27 28 29
|
syl3anc |
|
31 |
30
|
ad2antrr |
|
32 |
31
|
fveq2d |
|
33 |
32
|
fveq1d |
|
34 |
|
simplll |
|
35 |
28
|
adantr |
|
36 |
35
|
anim1i |
|
37 |
1 2 3 4 5 6 7 8
|
pm2mpf1lem |
|
38 |
34 36 37
|
syl2anc |
|
39 |
33 38
|
eqtrd |
|
40 |
|
simprr |
|
41 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
|
42 |
26 27 40 41
|
syl3anc |
|
43 |
42
|
fveq2d |
|
44 |
43
|
fveq1d |
|
45 |
44
|
ad2antrr |
|
46 |
40
|
adantr |
|
47 |
46
|
anim1i |
|
48 |
1 2 3 4 5 6 7 8
|
pm2mpf1lem |
|
49 |
34 47 48
|
syl2anc |
|
50 |
45 49
|
eqtrd |
|
51 |
39 50
|
eqeq12d |
|
52 |
2 3
|
decpmatval |
|
53 |
28 52
|
sylan |
|
54 |
2 3
|
decpmatval |
|
55 |
40 54
|
sylan |
|
56 |
53 55
|
eqeq12d |
|
57 |
|
eqid |
|
58 |
|
eqid |
|
59 |
|
simplll |
|
60 |
|
simpllr |
|
61 |
|
eqid |
|
62 |
|
simp2 |
|
63 |
|
simp3 |
|
64 |
3
|
eleq2i |
|
65 |
64
|
biimpi |
|
66 |
65
|
adantr |
|
67 |
66
|
ad2antlr |
|
68 |
67
|
3ad2ant1 |
|
69 |
68 3
|
eleqtrrdi |
|
70 |
2 61 3 62 63 69
|
matecld |
|
71 |
|
simp1r |
|
72 |
|
eqid |
|
73 |
72 61 1 57
|
coe1fvalcl |
|
74 |
70 71 73
|
syl2anc |
|
75 |
7 57 58 59 60 74
|
matbas2d |
|
76 |
3
|
eleq2i |
|
77 |
76
|
biimpi |
|
78 |
77
|
ad2antll |
|
79 |
78
|
adantr |
|
80 |
79
|
3ad2ant1 |
|
81 |
80 3
|
eleqtrrdi |
|
82 |
2 61 3 62 63 81
|
matecld |
|
83 |
|
eqid |
|
84 |
83 61 1 57
|
coe1fvalcl |
|
85 |
82 71 84
|
syl2anc |
|
86 |
7 57 58 59 60 85
|
matbas2d |
|
87 |
7 58
|
eqmat |
|
88 |
75 86 87
|
syl2anc |
|
89 |
56 88
|
bitrd |
|
90 |
89
|
adantlr |
|
91 |
|
oveq1 |
|
92 |
|
oveq1 |
|
93 |
91 92
|
eqeq12d |
|
94 |
|
oveq2 |
|
95 |
|
oveq2 |
|
96 |
94 95
|
eqeq12d |
|
97 |
93 96
|
rspc2va |
|
98 |
|
eqidd |
|
99 |
|
oveq12 |
|
100 |
99
|
fveq2d |
|
101 |
100
|
fveq1d |
|
102 |
101
|
adantl |
|
103 |
|
simplll |
|
104 |
|
simpllr |
|
105 |
|
fvexd |
|
106 |
98 102 103 104 105
|
ovmpod |
|
107 |
|
eqidd |
|
108 |
|
oveq12 |
|
109 |
108
|
fveq2d |
|
110 |
109
|
fveq1d |
|
111 |
110
|
adantl |
|
112 |
|
fvexd |
|
113 |
107 111 103 104 112
|
ovmpod |
|
114 |
106 113
|
eqeq12d |
|
115 |
114
|
biimpd |
|
116 |
115
|
exp31 |
|
117 |
116
|
com14 |
|
118 |
97 117
|
syl |
|
119 |
118
|
ex |
|
120 |
119
|
com25 |
|
121 |
120
|
pm2.43i |
|
122 |
121
|
impcom |
|
123 |
122
|
imp |
|
124 |
90 123
|
sylbid |
|
125 |
51 124
|
sylbid |
|
126 |
125
|
ralimdva |
|
127 |
126
|
impancom |
|
128 |
127
|
imp |
|
129 |
27
|
ad2antrr |
|
130 |
|
simprl |
|
131 |
|
simprr |
|
132 |
66
|
ad2antlr |
|
133 |
132
|
adantr |
|
134 |
133 3
|
eleqtrrdi |
|
135 |
2 61 3 130 131 134
|
matecld |
|
136 |
78
|
ad2antrr |
|
137 |
136 3
|
eleqtrrdi |
|
138 |
2 61 3 130 131 137
|
matecld |
|
139 |
|
eqid |
|
140 |
|
eqid |
|
141 |
1 61 139 140
|
ply1coe1eq |
|
142 |
141
|
bicomd |
|
143 |
129 135 138 142
|
syl3anc |
|
144 |
128 143
|
mpbird |
|
145 |
144
|
ralrimivva |
|
146 |
2 3
|
eqmat |
|
147 |
146
|
ad2antlr |
|
148 |
145 147
|
mpbird |
|
149 |
148
|
ex |
|
150 |
25 149
|
sylbid |
|
151 |
150
|
ralrimivva |
|
152 |
|
dff13 |
|
153 |
11 151 152
|
sylanbrc |
|