Metamath Proof Explorer


Theorem pm2mpf1

Description: The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 14-Oct-2019) (Revised by AV, 6-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P = Poly 1 R
pm2mpval.c C = N Mat P
pm2mpval.b B = Base C
pm2mpval.m ˙ = Q
pm2mpval.e × ˙ = mulGrp Q
pm2mpval.x X = var 1 A
pm2mpval.a A = N Mat R
pm2mpval.q Q = Poly 1 A
pm2mpval.t T = N pMatToMatPoly R
pm2mpcl.l L = Base Q
Assertion pm2mpf1 N Fin R Ring T : B 1-1 L

Proof

Step Hyp Ref Expression
1 pm2mpval.p P = Poly 1 R
2 pm2mpval.c C = N Mat P
3 pm2mpval.b B = Base C
4 pm2mpval.m ˙ = Q
5 pm2mpval.e × ˙ = mulGrp Q
6 pm2mpval.x X = var 1 A
7 pm2mpval.a A = N Mat R
8 pm2mpval.q Q = Poly 1 A
9 pm2mpval.t T = N pMatToMatPoly R
10 pm2mpcl.l L = Base Q
11 1 2 3 4 5 6 7 8 9 10 pm2mpf N Fin R Ring T : B L
12 7 matring N Fin R Ring A Ring
13 12 adantr N Fin R Ring u B w B A Ring
14 1 2 3 4 5 6 7 8 9 10 pm2mpcl N Fin R Ring u B T u L
15 14 3expa N Fin R Ring u B T u L
16 15 adantrr N Fin R Ring u B w B T u L
17 1 2 3 4 5 6 7 8 9 10 pm2mpcl N Fin R Ring w B T w L
18 17 3expia N Fin R Ring w B T w L
19 18 adantld N Fin R Ring u B w B T w L
20 19 imp N Fin R Ring u B w B T w L
21 eqid coe 1 T u = coe 1 T u
22 eqid coe 1 T w = coe 1 T w
23 8 10 21 22 ply1coe1eq A Ring T u L T w L n 0 coe 1 T u n = coe 1 T w n T u = T w
24 23 bicomd A Ring T u L T w L T u = T w n 0 coe 1 T u n = coe 1 T w n
25 13 16 20 24 syl3anc N Fin R Ring u B w B T u = T w n 0 coe 1 T u n = coe 1 T w n
26 simpll N Fin R Ring u B w B N Fin
27 simplr N Fin R Ring u B w B R Ring
28 simprl N Fin R Ring u B w B u B
29 1 2 3 4 5 6 7 8 9 pm2mpfval N Fin R Ring u B T u = Q k 0 u decompPMat k ˙ k × ˙ X
30 26 27 28 29 syl3anc N Fin R Ring u B w B T u = Q k 0 u decompPMat k ˙ k × ˙ X
31 30 ad2antrr N Fin R Ring u B w B a N b N n 0 T u = Q k 0 u decompPMat k ˙ k × ˙ X
32 31 fveq2d N Fin R Ring u B w B a N b N n 0 coe 1 T u = coe 1 Q k 0 u decompPMat k ˙ k × ˙ X
33 32 fveq1d N Fin R Ring u B w B a N b N n 0 coe 1 T u n = coe 1 Q k 0 u decompPMat k ˙ k × ˙ X n
34 simplll N Fin R Ring u B w B a N b N n 0 N Fin R Ring
35 28 adantr N Fin R Ring u B w B a N b N u B
36 35 anim1i N Fin R Ring u B w B a N b N n 0 u B n 0
37 1 2 3 4 5 6 7 8 pm2mpf1lem N Fin R Ring u B n 0 coe 1 Q k 0 u decompPMat k ˙ k × ˙ X n = u decompPMat n
38 34 36 37 syl2anc N Fin R Ring u B w B a N b N n 0 coe 1 Q k 0 u decompPMat k ˙ k × ˙ X n = u decompPMat n
39 33 38 eqtrd N Fin R Ring u B w B a N b N n 0 coe 1 T u n = u decompPMat n
40 simprr N Fin R Ring u B w B w B
41 1 2 3 4 5 6 7 8 9 pm2mpfval N Fin R Ring w B T w = Q k 0 w decompPMat k ˙ k × ˙ X
42 26 27 40 41 syl3anc N Fin R Ring u B w B T w = Q k 0 w decompPMat k ˙ k × ˙ X
43 42 fveq2d N Fin R Ring u B w B coe 1 T w = coe 1 Q k 0 w decompPMat k ˙ k × ˙ X
44 43 fveq1d N Fin R Ring u B w B coe 1 T w n = coe 1 Q k 0 w decompPMat k ˙ k × ˙ X n
45 44 ad2antrr N Fin R Ring u B w B a N b N n 0 coe 1 T w n = coe 1 Q k 0 w decompPMat k ˙ k × ˙ X n
46 40 adantr N Fin R Ring u B w B a N b N w B
47 46 anim1i N Fin R Ring u B w B a N b N n 0 w B n 0
48 1 2 3 4 5 6 7 8 pm2mpf1lem N Fin R Ring w B n 0 coe 1 Q k 0 w decompPMat k ˙ k × ˙ X n = w decompPMat n
49 34 47 48 syl2anc N Fin R Ring u B w B a N b N n 0 coe 1 Q k 0 w decompPMat k ˙ k × ˙ X n = w decompPMat n
50 45 49 eqtrd N Fin R Ring u B w B a N b N n 0 coe 1 T w n = w decompPMat n
51 39 50 eqeq12d N Fin R Ring u B w B a N b N n 0 coe 1 T u n = coe 1 T w n u decompPMat n = w decompPMat n
52 2 3 decpmatval u B n 0 u decompPMat n = i N , j N coe 1 i u j n
53 28 52 sylan N Fin R Ring u B w B n 0 u decompPMat n = i N , j N coe 1 i u j n
54 2 3 decpmatval w B n 0 w decompPMat n = i N , j N coe 1 i w j n
55 40 54 sylan N Fin R Ring u B w B n 0 w decompPMat n = i N , j N coe 1 i w j n
56 53 55 eqeq12d N Fin R Ring u B w B n 0 u decompPMat n = w decompPMat n i N , j N coe 1 i u j n = i N , j N coe 1 i w j n
57 eqid Base R = Base R
58 eqid Base A = Base A
59 simplll N Fin R Ring u B w B n 0 N Fin
60 simpllr N Fin R Ring u B w B n 0 R Ring
61 eqid Base P = Base P
62 simp2 N Fin R Ring u B w B n 0 i N j N i N
63 simp3 N Fin R Ring u B w B n 0 i N j N j N
64 3 eleq2i u B u Base C
65 64 biimpi u B u Base C
66 65 adantr u B w B u Base C
67 66 ad2antlr N Fin R Ring u B w B n 0 u Base C
68 67 3ad2ant1 N Fin R Ring u B w B n 0 i N j N u Base C
69 68 3 eleqtrrdi N Fin R Ring u B w B n 0 i N j N u B
70 2 61 3 62 63 69 matecld N Fin R Ring u B w B n 0 i N j N i u j Base P
71 simp1r N Fin R Ring u B w B n 0 i N j N n 0
72 eqid coe 1 i u j = coe 1 i u j
73 72 61 1 57 coe1fvalcl i u j Base P n 0 coe 1 i u j n Base R
74 70 71 73 syl2anc N Fin R Ring u B w B n 0 i N j N coe 1 i u j n Base R
75 7 57 58 59 60 74 matbas2d N Fin R Ring u B w B n 0 i N , j N coe 1 i u j n Base A
76 3 eleq2i w B w Base C
77 76 biimpi w B w Base C
78 77 ad2antll N Fin R Ring u B w B w Base C
79 78 adantr N Fin R Ring u B w B n 0 w Base C
80 79 3ad2ant1 N Fin R Ring u B w B n 0 i N j N w Base C
81 80 3 eleqtrrdi N Fin R Ring u B w B n 0 i N j N w B
82 2 61 3 62 63 81 matecld N Fin R Ring u B w B n 0 i N j N i w j Base P
83 eqid coe 1 i w j = coe 1 i w j
84 83 61 1 57 coe1fvalcl i w j Base P n 0 coe 1 i w j n Base R
85 82 71 84 syl2anc N Fin R Ring u B w B n 0 i N j N coe 1 i w j n Base R
86 7 57 58 59 60 85 matbas2d N Fin R Ring u B w B n 0 i N , j N coe 1 i w j n Base A
87 7 58 eqmat i N , j N coe 1 i u j n Base A i N , j N coe 1 i w j n Base A i N , j N coe 1 i u j n = i N , j N coe 1 i w j n x N y N x i N , j N coe 1 i u j n y = x i N , j N coe 1 i w j n y
88 75 86 87 syl2anc N Fin R Ring u B w B n 0 i N , j N coe 1 i u j n = i N , j N coe 1 i w j n x N y N x i N , j N coe 1 i u j n y = x i N , j N coe 1 i w j n y
89 56 88 bitrd N Fin R Ring u B w B n 0 u decompPMat n = w decompPMat n x N y N x i N , j N coe 1 i u j n y = x i N , j N coe 1 i w j n y
90 89 adantlr N Fin R Ring u B w B a N b N n 0 u decompPMat n = w decompPMat n x N y N x i N , j N coe 1 i u j n y = x i N , j N coe 1 i w j n y
91 oveq1 x = a x i N , j N coe 1 i u j n y = a i N , j N coe 1 i u j n y
92 oveq1 x = a x i N , j N coe 1 i w j n y = a i N , j N coe 1 i w j n y
93 91 92 eqeq12d x = a x i N , j N coe 1 i u j n y = x i N , j N coe 1 i w j n y a i N , j N coe 1 i u j n y = a i N , j N coe 1 i w j n y
94 oveq2 y = b a i N , j N coe 1 i u j n y = a i N , j N coe 1 i u j n b
95 oveq2 y = b a i N , j N coe 1 i w j n y = a i N , j N coe 1 i w j n b
96 94 95 eqeq12d y = b a i N , j N coe 1 i u j n y = a i N , j N coe 1 i w j n y a i N , j N coe 1 i u j n b = a i N , j N coe 1 i w j n b
97 93 96 rspc2va a N b N x N y N x i N , j N coe 1 i u j n y = x i N , j N coe 1 i w j n y a i N , j N coe 1 i u j n b = a i N , j N coe 1 i w j n b
98 eqidd a N b N N Fin R Ring u B w B n 0 i N , j N coe 1 i u j n = i N , j N coe 1 i u j n
99 oveq12 i = a j = b i u j = a u b
100 99 fveq2d i = a j = b coe 1 i u j = coe 1 a u b
101 100 fveq1d i = a j = b coe 1 i u j n = coe 1 a u b n
102 101 adantl a N b N N Fin R Ring u B w B n 0 i = a j = b coe 1 i u j n = coe 1 a u b n
103 simplll a N b N N Fin R Ring u B w B n 0 a N
104 simpllr a N b N N Fin R Ring u B w B n 0 b N
105 fvexd a N b N N Fin R Ring u B w B n 0 coe 1 a u b n V
106 98 102 103 104 105 ovmpod a N b N N Fin R Ring u B w B n 0 a i N , j N coe 1 i u j n b = coe 1 a u b n
107 eqidd a N b N N Fin R Ring u B w B n 0 i N , j N coe 1 i w j n = i N , j N coe 1 i w j n
108 oveq12 i = a j = b i w j = a w b
109 108 fveq2d i = a j = b coe 1 i w j = coe 1 a w b
110 109 fveq1d i = a j = b coe 1 i w j n = coe 1 a w b n
111 110 adantl a N b N N Fin R Ring u B w B n 0 i = a j = b coe 1 i w j n = coe 1 a w b n
112 fvexd a N b N N Fin R Ring u B w B n 0 coe 1 a w b n V
113 107 111 103 104 112 ovmpod a N b N N Fin R Ring u B w B n 0 a i N , j N coe 1 i w j n b = coe 1 a w b n
114 106 113 eqeq12d a N b N N Fin R Ring u B w B n 0 a i N , j N coe 1 i u j n b = a i N , j N coe 1 i w j n b coe 1 a u b n = coe 1 a w b n
115 114 biimpd a N b N N Fin R Ring u B w B n 0 a i N , j N coe 1 i u j n b = a i N , j N coe 1 i w j n b coe 1 a u b n = coe 1 a w b n
116 115 exp31 a N b N N Fin R Ring u B w B n 0 a i N , j N coe 1 i u j n b = a i N , j N coe 1 i w j n b coe 1 a u b n = coe 1 a w b n
117 116 com14 a i N , j N coe 1 i u j n b = a i N , j N coe 1 i w j n b N Fin R Ring u B w B n 0 a N b N coe 1 a u b n = coe 1 a w b n
118 97 117 syl a N b N x N y N x i N , j N coe 1 i u j n y = x i N , j N coe 1 i w j n y N Fin R Ring u B w B n 0 a N b N coe 1 a u b n = coe 1 a w b n
119 118 ex a N b N x N y N x i N , j N coe 1 i u j n y = x i N , j N coe 1 i w j n y N Fin R Ring u B w B n 0 a N b N coe 1 a u b n = coe 1 a w b n
120 119 com25 a N b N a N b N N Fin R Ring u B w B n 0 x N y N x i N , j N coe 1 i u j n y = x i N , j N coe 1 i w j n y coe 1 a u b n = coe 1 a w b n
121 120 pm2.43i a N b N N Fin R Ring u B w B n 0 x N y N x i N , j N coe 1 i u j n y = x i N , j N coe 1 i w j n y coe 1 a u b n = coe 1 a w b n
122 121 impcom N Fin R Ring u B w B a N b N n 0 x N y N x i N , j N coe 1 i u j n y = x i N , j N coe 1 i w j n y coe 1 a u b n = coe 1 a w b n
123 122 imp N Fin R Ring u B w B a N b N n 0 x N y N x i N , j N coe 1 i u j n y = x i N , j N coe 1 i w j n y coe 1 a u b n = coe 1 a w b n
124 90 123 sylbid N Fin R Ring u B w B a N b N n 0 u decompPMat n = w decompPMat n coe 1 a u b n = coe 1 a w b n
125 51 124 sylbid N Fin R Ring u B w B a N b N n 0 coe 1 T u n = coe 1 T w n coe 1 a u b n = coe 1 a w b n
126 125 ralimdva N Fin R Ring u B w B a N b N n 0 coe 1 T u n = coe 1 T w n n 0 coe 1 a u b n = coe 1 a w b n
127 126 impancom N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N n 0 coe 1 a u b n = coe 1 a w b n
128 127 imp N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N n 0 coe 1 a u b n = coe 1 a w b n
129 27 ad2antrr N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N R Ring
130 simprl N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N a N
131 simprr N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N b N
132 66 ad2antlr N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n u Base C
133 132 adantr N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N u Base C
134 133 3 eleqtrrdi N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N u B
135 2 61 3 130 131 134 matecld N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N a u b Base P
136 78 ad2antrr N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N w Base C
137 136 3 eleqtrrdi N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N w B
138 2 61 3 130 131 137 matecld N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N a w b Base P
139 eqid coe 1 a u b = coe 1 a u b
140 eqid coe 1 a w b = coe 1 a w b
141 1 61 139 140 ply1coe1eq R Ring a u b Base P a w b Base P n 0 coe 1 a u b n = coe 1 a w b n a u b = a w b
142 141 bicomd R Ring a u b Base P a w b Base P a u b = a w b n 0 coe 1 a u b n = coe 1 a w b n
143 129 135 138 142 syl3anc N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N a u b = a w b n 0 coe 1 a u b n = coe 1 a w b n
144 128 143 mpbird N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N a u b = a w b
145 144 ralrimivva N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n a N b N a u b = a w b
146 2 3 eqmat u B w B u = w a N b N a u b = a w b
147 146 ad2antlr N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n u = w a N b N a u b = a w b
148 145 147 mpbird N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n u = w
149 148 ex N Fin R Ring u B w B n 0 coe 1 T u n = coe 1 T w n u = w
150 25 149 sylbid N Fin R Ring u B w B T u = T w u = w
151 150 ralrimivva N Fin R Ring u B w B T u = T w u = w
152 dff13 T : B 1-1 L T : B L u B w B T u = T w u = w
153 11 151 152 sylanbrc N Fin R Ring T : B 1-1 L