Metamath Proof Explorer


Theorem pm2mpf1o

Description: The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 14-Oct-2019)

Ref Expression
Hypotheses pm2mpfo.p P = Poly 1 R
pm2mpfo.c C = N Mat P
pm2mpfo.b B = Base C
pm2mpfo.m ˙ = Q
pm2mpfo.e × ˙ = mulGrp Q
pm2mpfo.x X = var 1 A
pm2mpfo.a A = N Mat R
pm2mpfo.q Q = Poly 1 A
pm2mpfo.l L = Base Q
pm2mpfo.t T = N pMatToMatPoly R
Assertion pm2mpf1o N Fin R Ring T : B 1-1 onto L

Proof

Step Hyp Ref Expression
1 pm2mpfo.p P = Poly 1 R
2 pm2mpfo.c C = N Mat P
3 pm2mpfo.b B = Base C
4 pm2mpfo.m ˙ = Q
5 pm2mpfo.e × ˙ = mulGrp Q
6 pm2mpfo.x X = var 1 A
7 pm2mpfo.a A = N Mat R
8 pm2mpfo.q Q = Poly 1 A
9 pm2mpfo.l L = Base Q
10 pm2mpfo.t T = N pMatToMatPoly R
11 1 2 3 4 5 6 7 8 10 9 pm2mpf1 N Fin R Ring T : B 1-1 L
12 1 2 3 4 5 6 7 8 9 10 pm2mpfo N Fin R Ring T : B onto L
13 df-f1o T : B 1-1 onto L T : B 1-1 L T : B onto L
14 11 12 13 sylanbrc N Fin R Ring T : B 1-1 onto L